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GENERAL INTRODUCTION 

Group VI metal compounds have been the subject of much research since the 

discovery of the elements. Applications of these compounds vary widely from use in 

the alloying of steel^ and as refractory materials (e.g., WC for cutting tools and Mo2Si 

for resistance heaters) to the iron-molybdenum cofactor in nitrogenase and endogenous 

tungsten in bacterial enzymes. The many applications and uses of molybdenum and 

tungsten materials and their relative availability (1.2 ppm in the earth's crust) make 

them ideal candidates for scientific inquiry. This dissertation focuses on two areas of 

research on the chemistry of these two elements, the binary tungsten nitrides and the 

reduced molybdenum oxide compounds. 

Group VI Metal (Mo, W) Nitrides 

Traditional methods of preparing solid state materials required high temperatures 

in order to obtain diffusion rates necessary for the completion of the reactions. Thus, 

the number and types of compounds that can be prepared were restricted. This is 

especially true for the syntheses of materials which are thermodynamically less 

favorable at high temperatures. Therefore, "turning down the heat"^ has become a 

popular topic in current solid state research. Many new technologies involving low 

temperature reactions (with respect to the traditional high temperature solid state 
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reactions), including flux,'* hydrothermai,^ intercalation,^ and molecular precursor 

methods,^ have been developed. 

Transition metal nitrides possess free energies of formation that are dramatically 

less favorable than the corresponding oxides, principally because of the tremendous 

strength of the N=N bond (227 kcal mol'^) relative to 0=0 (119 kcal mol'b- As a 

consequence, the preparation of transition metal nitrides is often entropically disfavored 

at high temperatures, and the number and types of transition metal nitrides are much 

less than that of the oxides. 

An examination of the Group VI elements indicates a paucity of binary nitrides 

prepared by the traditional high temperature synthetic techniques, even though a 

number of ternary Group VI metal nitride compounds have been discovered.^' 

Thermodynamic studies on M02N by Lyutaya and Lakhtin demonstrated that the Gibbs 

free energy change for the formation of M02N increased with the increase of 

temperature. Table 1 lists some known and possible binary Group VI metal 

nitrides. Although considerable synthetic efforts have been devoted to preparing these 

nitride compounds, the structures and properties of these nitrides have remained 

17 18 elusive. Only two types of Group VI metal nitrides were observed as bulk solid 

phases, MN and M2N (M = Mo, W), with the metals in their lower oxidation states. 

Other phases are either unknown or prepared as thin films and observed only with 

electron microscopy. No bulk phases of Group VI metal nitrides with the metals in 
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Table 1. Some known and possible binary Group VI metal nitrides 

Nitride Example Preparation Structure 

M2N M02N, W2N M + NH3 (800°C) metal fee, N random 

M3N2 unknown 

MN MoN, WN M + NH3 (700°C) WC-hexagonal 
or hexagonal superlattice 

M4N5 unknown 

M3N4 unknown 

M2N3 M02N3, W2N3 thin film-hexagonal 

M3N5 W3N5 thin film-hexagonal 

M4N7 unknown 

MN2 WN2 thin film-trigonal 

oxidation states higher than HI have ever been reported. WN2, for example, was only 

observed as a brown coating on W filaments.^^ M02N3, which was prepared by the 

chemical vapor deposition (CVD) of Mo(NMe2)4 in ammonia gas, was also observed 

as a thin film.^® 

The bulk solid phases of the molybdenum and tungsten nitrides, MN and M2N (M 

= Mo, W) with the metals in oxidation states lower than HI, were prepared by flowing 
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NH3 over the metals at high temperature. The mononitrides were reported to have the 

hexagonal WC structure. In the structures of M2N, the metals were reported to be fee 

close packed, where the nitrogen atoms are randomly located in octahedral interstitial 

positions. 

Since the problems in traditional synthetic methodologies have limited the number 

and types of transition metal nitride compounds, new synthetic techniques of 

converting molecular precursors to the target products under more gentle conditions 

n  
have been explored. Parkin and co-workers attempted to convert metal halides to 

nitrides, which was successful for most early transition metals, but not for the Group 

VI metals. They attempted to convert M0CI3 and WCI4 to the nitrides by reaction 

with magnesium or calcium nitride at 500 °C. However, only the metals were 

obtained. 

Similarly, our synthetic strategy to produce binary Group VI metal nitrides 

involved the conversion of molecular precursors to the metal nitrides. However, our 

preferred molecular precursors are MNQ3 (M = Mo, W), which can be prepared from 

the reaction of trimethylsilyl azide with M0CI5 or WQg in 1,1-dichloromethane or 1,2-

dichloroethane, respectively, MNCI3 represents a potential intermediate to the desired 

products MNjj (x > 1). Through metathesis or redox reactions, Q atoms could be 

A  * 2  
replaced by other ligands, such as N3', N2 , and N , or removed by reduction 

reactions. 
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In this dissertation, new molecular precursors to tungsten nitrides are reported. 

Several new tungsten nitrides and carbide nitrides with novel structures, which were 

synthesized by metathetical reactions in a flux, thermal decomposition of the molecular 

precursors at relatively low temperatures, or by chemical vapor transport reactions, will 

be reported as well. 

Ternary Reduced Molybdenum Oxides 

Since the discovery of the reduced molybdenum oxide, NaMo40g,^^ containing 

trans-edge-shared Mog octahedra (Figure 1), ternary reduced molybdenum oxides have 

been studied extensively. A large number of compounds have been synthesized which 

contain various kinds of condensed Mo metal clusters.^'^ Over the past several years, 

ternary reduced rare-earth molybdenum oxides have caused great interest, because 

these compounds may possess interesting electrical and magnetic properties. Many 

compounds have been discovered in this area, and most of them have been structurally 

characterized.^'^^ 

One interesting family of ternary reduced rare-earth molybdenum oxides is the 

group of compounds containing Mog bicapped octahedra. The Mog bicapped 

octahedra could have three structural isomers (cis-, meta-, and trans-), which are shown 

in Figure 2. This structural feature may lead to an interesting crystal structure 

chemistry, because any combination of these isomers would generate a new crystal 
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Figure 1. The structure of NaMo40(3 viewed down the tetragonal c axis and a 

segment of a single chain of trans-edge-shared MogOj2-type clusters extended parallel 

to the c axis. 
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Mela Trans 

Figure 2. The Ihrcc slruclural isomers of Mog bicappecl oclahcdra. 

slniclure type. 

The first compound containing Mog bicapped octahedra was synthesized by 

electrolysis in 1990. This compound has a non-stoichionietric formula, LaMo-y yOj^, 

and contains only cis-bicappcd Mog octahedra, in which the face-capping positions are 

only 85% occupied by the Mo atoms. Subsequently, a stoichiometric compound, 

NdMogOj4,^ was discovered, in which the face-capping positions are fully occupied. 

These compounds exhibit paramagnetic behavior over the temperature range of 100-

300K, and metallic character at room temperature.^^'^^ 

More recently, the CeMogO|4^^ and PrMo80j4^® compounds, which contain 1:1 

and 2:1 ratios of cis- to trans-bicapped Mog octahedra, respectively, have been 
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prepared at extremely high temperatures by P. Gougeon and coworkers. 

In this work, the LnMogOj4 compounds (Ln = rare-earth) containing Mog 

bicapped octahedra have been systematically studied. The synthetic conditions. X-ray 

powder diffraction, single crystal structure determinations, electronic structure 

calculations, and properties of these interesting compounds will be discussed. 

Dissertation Organization 

This dissertation consists of four papers. Each paper is formatted for publication 

in a technical journal and the cited references are found at the end of each paper. 

GENERAL CONCLUSIONS follow the four papers. The references cited in the 

GENERAL INTRODUCTION are found at the end of the dissertation. 
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CHAPTER 1. SYNTHESIS, STRUCTURE, AND 
REACTIVITY OF THE MOLECULAR PRECURSOR 

[WNCI3 NCCH^^ 2NCCH3 

A paper to be submitted to Inorganic Chemistry 

Zhihong Zhang and Robert E. McCarley 

Abstract 

An acetonitrile adduct of WNCI3, [WNCl3 NCCH3]4-20113(1^, has been 

prepared from an acetonitrile solution of WNCI3 at room temperature. The red-orange 

compound crystallizes in the triclinic space group PI with crystallographic data, a = 

9.066(3) k,b = 9.745(4) A, c = 11.910(4) A, a = 95.78(3)°, P = 108.82(3)°, y = 

109.93(3)°, V = 909(1) A^ Z = 1, ^ = 0.020, and Rw = 0.021. The molecular 

structure of [WNCI3 •NCCH3]4 consists of a W4N4 tetrameric core. Two significandy 

different types of W-N bonds are found. One can be assigned as a WsN multiple 

bond with an average bond length of 1.705(5) A. The other type can be designated 

as a W-N single bond with an average bond length of 2.075(5) A. The IR spectrum 

of the tetramer shows strong WsN stretching bands in the range of 1028-1075 cm'^ 

[WNC13-NCCH3J4-2CH3CN also reacts with solvent CH3CN at reflux (81 °C). The 

dark blue amorphous product has a composition of W(NH)Cl3(CH3CN)2, and is 
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soluble in acetonitrile. The tungsten atoms in [WNCl3-NCCH3]4-2CH3CN were 

reduced from VI to V during the reaction. The reduction was confirmed by oxidation 

state determinations, ESR, and magnetic susceptibility measurements. 

Introduction 

One fundamental objective of this research was to synthesize molecular precursors 

that could be converted to the desired high oxidation state metal nitrides of tungsten. 

WNCI3 represents a potential intermediate to the desired products. For example, WN2, 

which is a hypothetical compound, could be prepared by replacing three CI" anions 

with one N^" anion. 

WNCI3 was initially prepared by K. Dehnicke and coworkers via the reaction of 

WClg and chlorine azide (CIN3) in CCI4 at 30°C.^ More recent studies have shown 

that CIN3 can be replaced by trimethylsilyl azide and tris(trimethylsilyl)amine as 

nitriding reagents for the formation of WNCl3.^'^ The reaction of W(CO)g with CIN3 

in CQ4 also provided a very efficient synthesis of WNCl3.^ 

WNCI3 was initially characterized by infrared spectroscopy, X-ray powder 

diffraction, and elemental analyses. Since then, the crystal structure of related 

compounds such as [WNa30PCl3]4-20PCl3,^ [WNCl30.5HN3]4,'^ and 

Q 
[WNCl3-NCPh]4-3CH2Cl2, which consist of molecular tetramers with multiple and 
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single W-N bonds arranged in an alternating fashion, have been characterized by single 

crystal X-ray diffraction methods. The crystal structure of WNCI3 as a compound 

uncoordinated by other ligands was not reported in the literature until a tetrameric form 

was characterized by M. Qose and R. E. McCarley using single crystal X-ray 

diffraction methods.^ 

In order to increase the utility of WNQ3 as a soluble molecular precursor to 

tungsten nitrides, an acetonitrile adduct of WNQ3 was prepared from acetonitrile 

solution, and characterized structurally by single crystal X-ray diffraction methods. 

In this section, the synthesis, structure, and reactivity of this WNCl3-acetonitrile adduct 

will be discussed. 

Experimental 

Materials 

The reagents are air and moisture sensitive. Therefore, all manipulations were 

performed under inert-atmosphere conditions using standard drybox, high vacuum 

manifold, and Schlenk techniques. Acetonitrile (MeCN) and 1,2-dichloroethane (DCE) 

were dried by standard methods using CaH2 as a drying reagent. Tungsten 

hexachloride was obtained from Alfa Chemical Co. and sublimed under dynamic 
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vacuum at 120-160°C to remove the more volatile WOQ4 impurity. Trimethylsilyl 

azide (TMSA) was obtained from Aldrich Chemical Co, and used as received. 

Analytical Procedures 

Tungsten analysis 

Gravimetric determination of W was accomplished by conversion of samples to 

the trioxide via addition of an oxidizing solution in a tared crucible. Samples were 

initially treated with dilute (3M) nitric acid and then with concentrated nitric acid. The 

crucibles were gentiy heated (~1(X) °C) on a hot plate to slowly evaporate the solution. 

Once the solution was evaporated, the temperature of the hot plate was increased (~150 

®C), and the crucibles were heated at this temperature until the samples became 

yellow. The crucibles were heated at 800 °C in a muffle furnace until constant 

weights were achieved. 

Chlorine analysis 

Chlorine was determined by the potentiometric titration of neutralized solutions 

of dissolved sample with a standardized AgN03 solution. Ag/AgCl was used as the 

working electrode and a silver electrode as the reference. Samples were dissolved in 

a basic solution (KOH) with 30 % H2O2, and gently heated on a hot plate. The clear 
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solutions were then neutralized with 3N nitric acid to pH ~ 6-7, and then titrated. 

Nitrogen, carbon, and hydrogen analysis 

The nitrogen, carbon, and hydrogen analyses were obtained from Galbraith 

Laboratories, Inc. and the ISU Chemistry Department Instrument Services. 

Oxidation state analysis 

A sample was dissolved in dilute NaOH solution under N2 flow and then 6 M 

sulfuric acid was used to adjust the pH to 2. The Ce(IV) solution, which was prepared 

by dissolving reagent grade ammonium hexanitritocerate(IV) in 0.18 M sulfuric acid,^® 

was added immediately. The solution was allowed to stand for 24 hours in an inert 

atmosphere glove bag. (It is better to directly dissolve the sample in Ce(rV) solution 

to avoid the oxidation of the sample by other oxidizing reagents, for example, oxygen. 

For this specific case, however, the sample was not soluble in the Ce(IV) solution, and 

the oxidation of tungsten took quite a long time. Thus the procedure described above 

was applicable.) A quantitative amount of freshly standardized Fe(n) ammonium 

sulfate solution was added to react with the excess Ce(IV). Titration of the excess 

Fe(n) with the cerium ammonium nitrate solution was then performed with a calomel 

reference electrode and a Pt indicating electrode. 
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Physical Measurements 

Infrared spectroscopy 

Infrared spectra were obtained on a Bomem MB-Series Fourier transform infrared 

spectrometer. The samples were prepared as Nujol mulls and pressed between Csl 

plates. The spectra were recorded in the range of 4000 to 185 cm*^ 

ESR spectroscopy 

ESR spectra were obtained on a Bruker ER-200D X-band spectrometer. The 

samples were prepared by sealing 50 mg of material in a quartz tube (3mm ID, 4mm 

OD, and 28mm L) under dynamic vacuum. The spectra were recorded in the field 

range of 2000-5000 G at 9.49 x 10^ Hz and 120 K. 

Magnetic susceptibility measurements 

Magnetic susceptibility was measured with a Quantum Design SQUID 

magnetosusceptometer. The samples were prepared by sealing 20-50 mg of material 

between two quartz rods (2.8-2.9mm D) in a quartz tube (3mm ED, 4mm OD, and 

17nun L) under a helium atmosphere Gess than 0.1 torr). The data were collected in 

the temperature range of 6-3(X) K at 3 tesla. 
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Synthetic Procedures 

Preparation of WNCI3 

In a typical preparation, a solution of DCE (80 mL) and TMSA (9.68 mL, 70 

mmol) was added dropwise (approximately 4 drops/s) to a refluxing solution of WClg 

(28.0 g, 70 mmol) in DCE (270 mL). The mixture was refluxed for 2 days, and the 

solution color changed from dark purple to light purple, and a bright orange solid 

precipitated. The bright orange solid was isolated by filtration and purified by 

extraction with DCE to remove any unreacted WClg and soluble silane. The solid was 

then dried under dynamic vacuum for a period of not less than 12 hours and isolated 

in a dry box. Then, the solid was heated at 160 °C under dynamic vacuum to remove 

the coordinated DCE. A typical yield was 15.0 g (70%). IR (Nujol, cm*^): a)(W=N), 

1082 s, 1062 sh; d(W-C1), 389 sh, 378 s, 361 s, 356 sh, 331 s, 309 s. Anal. Calcd for 

WNCI3: W, 60.43%; a, 34.96%; QiW, 3.00:1. Found: W, 60.32%; CI, 34.60%; 

a:W, 2.99:1. 

Preparation of [WNCI3 NCCH3]4-2NCCH3 

WNCI3 (0.5 g) was loaded into a Pyrex tube in a drybox, and the tube sealed 

under dynamic vacuum. The bright orange sample was heated at 160-200 °C for 24 

hours, and a brown solid was obtained. Extraction of the solid with CH3CN gave a 

deep orange solution. The solution was allowed to stand at room temperature for 1 
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week, and orange single crystals were obtained. IR (Nujol, cm'^): ^(NsC), 2309 m, 

2281 m; \)(W=N), 1075 s. 1028 sh; \)(out-of-plane C-H bending), 936 s; t)(W-Cl), 378 

sh, 357 s, 329 s. 

Reaction of [WNCl3 NCCH3]4-2CH3CN with solvent CH3CN 

WNCI3 (0.1 g) was loaded into a 100 mL reaction flask in a drybox, and ~60 mL 

of CH3CN was then distilled onto the solid. A deep orange solution initially formed. 

The solution was heated to reflux under flowing N2 for 2 days. A dark solution was 

then obtained. By removing solvent and drying under dynamic vacuum, a dark blue 

amorphous solid was produced. IR (Nujol, cm'^): d(NsC), 2304 m, 2279 m ; t)(N-H), 

3199; \)(W-a), 316 s. Anal. Calcd for W(NH)Cl3(CH3CN)2: W, 47.48%; CI, 

27.47%; N, 10.85%; C, 12.40%; H, 1.81%. Found; W, 47.30%; Q, 28.06%; N, 

10.82%; C, 12.35%; H, 1.54%; QrW, 3.08:1; N:W, 3.00:1; C:W, 4.00:1; C:N, 1.33:1. 

X-ray Structure Determination 

A suitable orange single crystal with dimensions of 0.10 x 0.06 x 0.20 mm^ was 

selected from material still in contact with the mother solution. The crystal was then 

encased in epoxy resin while in a glove bag under a nitrogen flow, attached to the tip 

of a glass fiber, and sealed in a glass capillary. All measurements were made on a 

Rigaku AFC6R diffractometer using graphite monochromated Mo Ka (X, = 0.71069 
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A) radiation and a 12 kW rotating anode generator. 

Cell constants and an orientation matrix for data collection were obtained from a 

least-squares refinement using the setting angles of 22 carefully centered reflections 

in the range 4.0 < 20 < 35.0, and corresponded to a triclinic cell with dimensions: a 

= 9.066(3) A, 6 = 9.745(4) A, c = 11.910(4) A, a = 95.78(3)®, p = 108.82(3)°, y = 

109.93(3)°, and V = 909(1) A^. The data were collected at -65 °C using the Q)-20 scan 

technique over the range 4° < 20 < 50° in the hemisphere (±A, -k-k, ±/). Three 

standard reflections were monitored every 150 reflections and showed no intensity 

variation over the collection period. A total of 3436 reflections were collected, of 

which 3228 were unique (7?^-^ = 0.026) and 2562 of which were observed with I > 

3.(Xky(/). No Decay correction was applied. With an absorption coefficient for Mo 

Ka radiation of p = 135.21 cm•^ an empirical absorption correction using the \|/ scan 

technique was applied after the structure solution. The data were corrected for Lorentz 

and polarization effects. 

The triclinic space group was Fl (#2) was chosen on the basis of systematic 

absences and intensity statistics. The structure was solved by the SHELXS direct 

methods^ which yielded the positions of the tungsten atoms. Successive Fourier 

electron difference maps yielded the positions of the chlorine, nitrogen and carbon 

atoms. The structure was then refined by full-matrix least-squares methods with 

anisotropic thermal parameters on all non-hydrogen atoms. Idealized hydrogen 
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positions were calculated and placed in the refinement with C-H distances equal to 

1.04 A, but their parameters were held constant during the subsequent cycles. The 

final cycle of full-matrix least-squares refinement was based on 2562 observed 

reflections and 172 variable parameters and converged with unweighted and weighted 

agreement factors of R = 0.020 and Rw = 0.021, respectively. The asymmetric unit was 

found to be [WNQ3-NCCH3]2-CH3CN. All calculations were performed using the 

TEXSAN^ crystallographic software package of Molecular Structure Corporation. 

The crystallographic data and refinement results are given in Table 1, and the 

positional parameters and isotropic equivalent temperature factors are given in Table 

2, The anisotropic temperature factors are listed in Table 3. 

Results and Discussion 

Synthesis of [WNCl3 NCCH3]4 -2CH3CN 

WNCI3 may exist in two different solid state forms, namely, a polymeric form 

[WNQsln, and a tetrameric form [WNCl3]4. The WNQ3 obtained from the reaction 

between WClg and (OH3)3SiN3 in dichloroethane at reflux may be the polymer 

[WNQsln, because this bright orange solid is not soluble in acetonitrile. However, 

when the bright orange solid was heated at 160-200°C in a sealed Pyrex tube, a deep 
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Table 1. Crystallographic data for [WNQ3-NCCH314-2CH3CN 

Empirical Formula 
Formula Weight 
Crystal Size 
Crystal System 
Space Group 
Lattice Parameters 

Volume 

Z Value 

Calculated Density 

^000 
p(MoKa) 
Diffractometer 
Radiation 
Temperature 
Two-theta Range 

Scan Mode 

No. of Reflections Collected 
No. Observations (I > 3.00a(I)) 
No. Variables 
Max Shift/error in Final Cycle 
Goodness of Fit^ 
Max. and Min. Peaks in the Final Diff. Map 

Residuals^ 

C12CI12H18N10W4 
1463.18 
O.IO x 0.06 x 0.20 mm^ 
ti^linic 
PI (#2) 
a = 9.066(3) A 
b = 9.745(4) A 
c= 11.910(4) A 
a = 95.78(3)° 

p = 108.82(3)° 

Y = 109.93(3)° 

909(1) A^ 

1 
2.671 g/cm^ 

660.00 
135.21 cm-^ 
Rigaku AFC6R 
MoKa (X = 0.71069A) 
-65.0 °C 
0-50° 

a>-26 

3228 

2562 
111 

0.00 
1.39 
0.73, -0.91 eVA^ 
R = 0.020, Rw = 0.021 

^ Goodness of Rt = [I(0{|F„ I- |FJ)2/{N„bs -
R = S I |Fo| - |Fc| I /S |Fo|: Rw = [( X w (|Fo| - |Fc|)^ / £ w Fo^ )l'^. 
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Table 2. Atomic coordinates and equivalent isotropic thermal parameters (A^) of 
the non-hydrogen atoms for [WNCl3-NCCH3]4-2CH3CN 

atom X y z V 

W(l) 0.26657(3) 0.99225(3) -0.20845(2) 1.270(6) 

W(2) 0.25493(3) 0.82092(3) 0.08013(2) 1.151(6) 

a(i) 0.3099(2) 0.7975(2) -0.3026(2) 2.52(4) 

ci(2) 0.2864(2) 1.2287(2) -0.1331(2) 2.58(4) 

a(3) -0.0094(2) 0.9141(3) -0.3425(2) 3.19(5) 

Cl(4) 0.2504(2) 0.6178(2) -0.0608(2) 2.25(4) 

ci(5) 0.1897(2) 1.0123(2) 0.1310(2) 2.17(4) 

Cl(6) 0.1968(2) 0.6933(2) 0.2049(2) 2.42(4) 

N(l) 0.2431(6) 0.9133(6) -0.0908(5) 1.2(1) 

N(2) 0.5295(6) 1.0920(6) -0.1319(5) 1.4(1) 

N(3) 0.3377(8) 1.1013(8) -0.3608(6) 2.6(2) 

N(4) -0.0374(7) 0.7075(6) -0.0538(6) 1.9(1) 

N(5) 0.289(1) 0.4577(10) 0.537(1) 6.8(3) 

C(l) 0.3902(9) 1.1494(9) -0.4286(7) 2.3(2) 

C(2) 0.456(1) 1.205(1) -0.5181(8) 3.7(2) 

C(3) -0.1764(9) 0.6584(8) -0.1081(7) 2.0(2) 

C(4) -0.3618(10) 0.5909(10) -0.1796(9) 3.9(2) 

C(5) 0.186(1) 0.415(1) 0.5704(10) 3.9(2) 

C(6) 0.051(1) 0.358(1) 0.6129(9) 4.4(3) 

^ Bgq = 8/37c2(Uii(aa*)2 + U22(bb*)2 + U33(cc*)^ + 2Ui2aa*bb*cos7 + 

2Uj3aa*cc*cosP + 2U23bb*cc*cosa) 
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Table 3. Anisotropic thermal parameters^ (A^) of the non-hydrogen atoms for 
[WNQg •NCCH3]4 •2CH3CN 

Atom Uii ^22 U33 U12 Ui3 ^23 

W(l) 0.0156(1) 0.0196(2) 0.0128(2) 0.0071(1) 0.0050(1) 0.0038(1) 

W(2) 0.0151(1) 0.0120(2) 0.0165(2) 0.0049(1) 0.0063(1) 0.0035(1) 

a(i) 0.037(1) 0.027(1) 0.032(1) 0.0114(9) 0.0176(9) -OJ0018(9) 

ci(2) 0.041(1) 0.028(1) 0.040(1) 0.0232(9) 0.0182(10) 0.0104(9) 

Cl(3) 0.0213(9) 0.067(2) 0.023(1) 0.0154(9) 0.0007(8) 0.003(1) 

Cl(4) 0.0356(10) 0.0186(9) 0.033(1) 0.0130(8) 0.0136(9) 0.0014(8) 

Cl(5) 0.0329(9) 0.0248(10) 0.029(1) 0.0169(8) 0.0124(8) 0.0010(8) 

a(6) 0.0334(10) 0.030(1) 0.032(1) 0.0098(8) 0.0167(9) 0.0181(9) 

N(l) 0.011(3) 0.013(3) 0.021(3) 0.002(2) 0.007(2) 0.004(2) 

N(2) 0.018(3) 0.019(3) 0.013(3) 0.007(2) 0.001(2) 0.008(2) 

N(3) 0.033(4) 0.047(5) 0.023(4) 0.018(3) 0.010(3) 0.016(4) 

N(4) 0.023(3) 0.018(3) 0.028(4) 0.005(3) 0.011(3) 0.007(3) 

N(5) 0.072(6) 0.043(6) 0.14(1) 0.009(5) 0.056(7) 0.007(6) 

C(l) 0.025(4) 0.048(5) 0.022(4) 0.020(4) 0.012(3) 0.013(4) 

C(2) 0.046(5) 0.066(7) 0.040(6) 0.024(5) 0.026(5) 0.028(5) 

C(3) 0.024(4) 0.012(4) 0.040(5) 0.007(3) 0.013(4) 0.009(4) 

C(4) 0.023(4) 0.033(5) 0.071(7) 0.011(4) -0.006(4) 0.013(5) 

C(5) 0.043(5) 0.038(6) 0.062(7) 0.019(5) 0.016(5) 0.002(5) 

C(6) 0.049(6) 0.067(7) 0.047(6) 0.024(5) 0.011(5) 0.007(6) 

^The coefficients Uy of the anisotropic temperature factor expression are defined as 
exp(-27c2(a*2ujjh2 + + 2a*b*Ui2hk + 2a*c*Uj3hl + 

2b*c*U23kl)) 
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orange solid which was soluble in acetonitrile was obtained. This deep orange solid 

is the tetrameric form of WNQ3. Therefore, in order to obtain [WNa3*NCCH3]4, 

the starting WNCI3 must be preheated at I60-200°C for 24 hours. 

Structure of [WNCl3^4CCH3]4-2CH3CN 

rWNQ3*NCCH3]4-2CH3CN crystallizes in the triclinic space group PI with one 

[WNQ3 •NCCH314 molecule and two free CH3CN molecules per unit cell. An 

ORTEP diagram of the unit cell is shown in Figure 1. The molecular structure of 

[WNQj-NCCHg]^ (Rgure 2) consists of a W4N4 tetramer core, in which the four 

tungsten and four nitrogen atoms define a ring system. The selected bond distances 

and angles for [WNCl3-NCCH3]4-2CH3CN are listed in Tables 4 and 5, respectively. 

It is observed that there are essentially two significantly different types of W-N bonds 

in the W4N4 tetramer ring as previously found in [WNCl3]4 and related compounds. 

One type of bond has an average length of 1.705(5) A, which can be assigned as a 

multiple bond. The other type of bond has an average length of 2.075(5) A, which is 

a typical W-N single bond length. These two bond types are arranged in an alternating 

fashion to complete the tetramer ring system. The bond lengths and angles of 

[WNCl3-NCCH3]4 are all quite similar to those of other tungsten nitride tetramers as 

shown by the comparison given in Table 6. 

Each tungsten atom is coordinated by two nitrogen atoms, three chlorine atoms 
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Figure 1. An ORTEP diagram of the unit cell for [WNC13 NCCH3J4-2CH3CN. 
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Figure 2. The molecular structure of [WNClg-NCCHg]^. 
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Table 4. Selected bond distances (A) in [WNCl3*NCCH3]4-2CH3CN 

atom atom distance atom atom distance 

W(l) Cl(l) 2.319(2) W(l) Cl(2) 2.312(2) 

W(l) a(3) 2.295(2) W(l) N(l) 1.703(5) 

W(l) N(2) 2.073(5) W(l) N(3) 2.348(6) 

W(2) Cl(4) 2.308(2) W(2) Cl(5) 2.302(2) 

W(2) a(6) 2.317(2) W(2) N(l) 2.078(5) 

W(2) N(2) 1.707(5) W(2) N(4) 2.338(6) 

N(3) C(l) 1.127(9) N(4) C(3) 1.112(9) 

N(5) C(5) 1.11(1) C(l) C(2) 1.45(1) 

C(3) C(4) 1.481(10) C(5) C(6) 1.43(1) 

and one acetonitrile molecule to form a distorted octahedron (Figure 3), The 

acetonitrile molecules bound to the tungsten atoms are trans to the W-N multiple 

bonds. Because of the strong W-N multiple bond and the trans influence, the 

acetonitrile molecules are only weakly bound to the tungsten atoms. This is reflected 

by the relatively long average bond distance of W-NCCH3, which is 2.343(6) A. On 

the basis of the average W-Cl bond distance of 2.309 A, we estimate that a normal W-

N single bond distance should be ca, 2.02 A, similar to the average W-N (nitride) 

distance of 2.076 A. 
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Table 5. Selected bond angles (°) in [WNa3-NCCH3]4-2CH3CN 

atom atom atom angle atom atom atom angle 

C1(1) W(l) a(2) 162.70(7) Cl(l) W(l) Cl(3) 93.85(9) 

C1(1) W(l) N(l) 94.4(2) a(i) W(1) N(2) 83.9(2) 

Cl(l) W(l) N(3) 81.7(2) a(2) W(1) Cl(3) 93.99(9) 

Cl(2) W(l) N(l) 99.0(2) a(2) W(1) N(2) 83.9(2) 

Cl(2) W(l) N(3) 83.6(2) Cl(3) W(1) N(l) 102.2(2) 

Cl(3) W(l) N(2) 161.9(2) Cl(3) W(1) N(3) 85.2(2) 

N(l) W(l) N(2) 95.9(2) N(l) W(1) N(3) 171.9(2) 

N(2) W(l) N(3) 76.7(2) a(4) W(2) Cl(5) 163.06(7) 

a(4) W(2) Cl(6) 94.63(7) Cl(4) W(2) N(l) 84.6(2) 

Cl(4) W(2) N(2) 96.5(2) Cl(4) W(2) N(4) 81.8(2) 

Cl(5) W(2) Cl(6) 92.29(7) Cl(5) W(2) N(l) 84.9(2) 

Cl(5) W(2) N(2) 97.7(2) Cl(5) W(2) N(4) 83.2(2) 

Cl(6) W(2) N(l) 166.0(1) Cl(6) W(2) N(2) 98.9(2) 

Cl(6) W(2) N(4) 86.0(2) N(l) W(2) N(2) 95.0(2) 

N(l) W(2) N(4) 80.0(2) N(2) W(2) N(4) 174.9(2) 

W(l) N(l) W(2) 170.7(3) W(l) N(2) W(2) 176.2(4) 

W(l) N(3) C(l) 170.9(6) W(2) N(4) C(3) 177.6(6) 

N(3) C(l) C(2) 177.8(9) N(4) C(3) C(4) 179.1(8) 

N(5) C(5) C(6) 179(1) 
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Table 6. Comparison of bond lengths (A) in selected [WNCl3-L]4 tetramers 

Bond [WNCl3-NCCH3l4 [WNCI3I4 [WNC130.5HN314 [WNCl3-NCPh]4 [WNa30Pa3l4 

W(l)-N(l) 1.703(5) 1.705(7) 1.69(3) 1.65(2) 1.671(2) 

W(l)-N(2) 2.073(5) 2.085(7) 2.11(3) 2.08(2) 2.169(3) 

W(1)-C1(1) 2.319(2) 2.276(2) 2.30(1) 2.280(6) 2.336(3) 

W(1)-C1(2) 2.312(2) 2.328(3) 2.28(1) 2.291(6) 2.318(3) 

W(1)-C1(3) 2.295(2) 2.276(2) 2.27(1) 2.270(6) 2.287(3) 

W(l)-L(l) 2.348(6) 2.895(3) 2.44(2) 2.49(2) 2.379(2) 

W(2)-N(l) 2.078(5) 2.077(7) 2.08(3) 2.11(2) 2.163(2) 

W(2)-N(2) 1.707(5) 1.686(7) 1.68(3) 1.70(2) 1.648(3) 

W(2)-CI(4) 2.308(2) 2.265(2) 2.30(1) 2.315(6) 2.323(3) 

W(2)-C1(5) 2.302(2) 2.255(2) 2.26(1) 2.283(6) 2.318(2) 

W(2)-Ci(6) 2.317(2) 2.387(2) 2.38(1) 2.324(6) 2.359(3) 

W(2)-L(2) 2.338(6) 2.805(3) 2.80(2) 2.28(2) 2.316(3) 
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Figure 3. The coordination spheres of tungsten atoms in the structure of [WNCl3-NCCH3]4. 
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Infrared spectroscopy 

Infixed spectroscopy has been used extensively to characterize nitridometal 

chloride compounds. Its utility is based on the strong stretching mode of the M=N 

multiple bonds and the sensitivity of the M-Q stretching frequencies. Any reactions 

on nitrogen or chlorine will result in large changes in the IR spectra. 

By examining the frequencies of the W=N stretching vibrations (Table 7), it is 

noted that the relative intensities and frequencies of the W=N multiple bond stretching 

modes are related to the W-N bonding types. The IR bands of W=N multiple bonds 

in the WsN-W bridging bonds exhibit stronger intensities and higher frequencies than 

that in the W=N: terminal bonds. The W=N asymmetric stretching frequencies in the 

WsN-W bridging bonds, as shown in Table 7, are in the range of 1050-1090 cm'^ 

In comparison, the WsN asymmetric stretching frequencies in the WsN: terminal 

bonds are in the range of 1000-1040 cm*^ The IR spectrum of [WNQ3•NCCH3]4 

in this work shows a strong band at 1075 cm'^ (Figure 4), which can be assigned as 

t)(WsN) modes. This observation further confirms that the relative intensities and 

frequencies of the W=N multiple bond stretching modes in W=N-W bridging bonds 

are stronger and higher. The W-Q stretching frequencies are in the range of 270-400 

cm"\ which consist of two strong bands at 357 and 329 cm*\ and two shoulders at 

378 and 286 cm'^. The bands at 2309 cm"^ and 2281 cm'^ are the characteristic ON 

stretching frequencies of coordinated acetonitrile. 
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Table 7. Frequencies (cm*^) of WsN stretching vibrations in compounds containing WhN multiple bonds 

Terminal type WsN: a)(WsN:) Bridging type W=N-W 'U(WhN) 

WNCl3(Bipy)^^ 1006 [WNCl3-POCl3]/ 1074, 1087 

WNCl3(Py)3^^ 1040 [WNCl3-NCPhl4^ 1082 

AsPh4[WNCl4l^2 1036 [WNCl30.5HN3l4'^ 1050, 1082 

[WNC13149 1076, 1086 

[WNCl3L^2 1068, 1086 
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Figure 4. Infrared spectrum (Nujol) for [WNCl3-NCCH3]4, 
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Reaction of [WNCl3^^CCH3]4 with CH3CN 

Although [WNCI3 •NCCH3]4 is soluble in acetonitrile at room temperature, it 

reacts with CH3CN at reflux. It is well known that alkyl cyanides react with high 

oxidation state transition metal haUdes. For example, the reactions of molybdenum 

and tungsten halides (MX5, MXg, M = Mo, W; X = CI, Br) with alkyl cyanides (RCN, 

R = Me, Et, and n-Pr) were well studied by Fowles and coworkers. The metals were 

reduced from M(V) or M(VI) to M(IV). The products were characterized as 6-

coordinate complexes with the general formula MX^CRCI^- The formation of 

hydrogen halides was also observed. 

The product of [WNCl3-NCCH3]4 with acetonitrile at reflux was a dark blue 

amorphous solid which was also soluble in acetonitrile. Chemical analyses of this 

product provided a composition of WCI3 08^2 99C3 ggHg 34, which is close to that 

required for W(NH)Q3(CH3CN)2- This is a 6-coordinate complex. Therefore, the 

[WNCl3*NCCH3]4 tetramers may be dissociated to W(NH)Q3(CH3CN)2 monomers 

due to the protonation of the bridging nitrogen atoms in the tetramers. The absence 

of the band at 1075 cm*^ in the IR spectrum shown in Figure 5 indicates that the 

WsN-W bridging bonds are broken. The occurrence of the band at 3199 cm'^ 

indicates that the nitrogen atoms bonded to tungsten atoms may be protonated. 

The tungsten oxidation state determination in W(NH)Cl3(CH3CN)2 provided a 

value of 5.10, which is very close to 5. Therefore, it can be concluded that the W(VI) 
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in [WNCl3-NCCH3]4 was reduced to W(V)- The following ESR and magnetic 

susceptibility measurements confirm this conclusion as well. 

The ESR spectrum of "W4a| i(NH)4(CH3CN)g" (Rgure 6) shows a strong signal 

at H = 3860 G. The g factor of this material was then calculated to be 1.756, 

according to the equation g = h\)/j3H, where h is the Plank constant (6.6261 x 10'^ 

J-s); P is Bohr magneton (9.2740 x 10'^'^ J*T"^); and "U is the frequency of the 

microwave radiation (9.495 x 1()^ Hz). Based on this g factor, the material should 

have an effective magnetic moment, p = ^[s(s+l/2)]^^, equal to 1.52, The small g 

factor indicates less delocalization of the single electron, which was also observed in 

many other compounds containing W(V) species.For comparison. Table 8 lists the 

g factors of selected compounds containing W(V) species. 

Figure 7 shows the molar susceptibility of W(NH)Cl3(CH3CN)2 ^ ^ function of 

temperature. The susceptibility data in the range of 100-300 K were fitted to a 

modified Curie-Weiss relation, % = C/(T - 6) + Xq, where C, 0, and Xq refer to the 

Curie constant, the Weiss temperature, and temperature independent susceptibility, 

respectively. The values for C, 0, and Xq are 0.2951, 21.95 K, and 2.144 x 10'^ 

emu/mol, respectively. An effective magnetic moment was then calculated to be 1.54 

Pg according to the equation p = 2.83C"^^. The calculated single electron spin-only 

moment based on the g factor obtained from ESR study was 1.52 pg. The consistency 

of these two values further confirmed that the tungsten atoms in the parent compound 
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Figure 6. ESR spectrum for W(NH)Cl3(CH3CN)2. 
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Table 8. The g factors of selected W(V) species 

Species gi gj_ 

[WOFgl^- 1.589 1.767 

[WOOsl^- 1.773 1.804 1.758 

[WOBrj]^- 1.830 1.940 1.775 

K2[W0(NCS)5] 1.803 1.775 1.819 

WCI5 

in glycerol 1.754 1.79 1.757 

in HCl 1.745 1.78 1.756 

inCj^sOH 1.743 1.79 1.718 
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temperature, and reciprocal susceptibility vs. temperature (inset). 
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were reduced from W(VI) to W(V). 

Although a single crystal structure would help to better understand this material, 

attempts to grow single crystals in many solvents, such as acetonitrile, propionitrile, 

pyridine, and THF, were not successful. 

Conciusions 

An acetonitrile adduct of WNCI3 can be prepared from an acetonitrile solution of 

WNCI3 at room temperature. [WNCl3-NCCH3]4-2CH3CN crystallizes in the triclinic 

space group PI with one [WNCI3•NCCH3J4 molecule and two free CH3CN molecules 

per unit cell. The molecular structure of [WNCI3 •NCCH3]4 consists of a W4N4 

tetrameric core. Two significantly different types of W-N bonds are found. One can 

be assigned as a W=N multiple bond with an average bond length of 1.705(5) A. The 

other one can be designated as a W-N single bond with an average bond length of 

2.075(5) A. 

Although [WNCl3*NCCH3]4-2CH3CN is soluble in acetonitrile at room 

temperature, it reacts with solvent CH3C!N at reflux (81 °C). The dark blue amorphous 

product has the composition of W(NH)a3(CH3CN)2, and is soluble in acetonitrile as 

well. The tungsten atoms in [WNa3-NCCH3]4-2^301 were reduced from W(VI) 

to W(V) during the reaction. The reduction was confirmed by oxidation state 



www.manaraa.com

39 

determination, ESR, and magnetic susceptibility measurements. 
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CHAPTER 2. SYNTHESIS AND CHARACTERIZATION OF 
MOLECULAR PRECURSORS TO TUNGSTEN NITRIDES 

AND THEIR THERMAL DECOMPOSITION STUDIES 

A paper to be submitted to Chemistry of Materials 

Zhihong Zhang and Robert E. McCarley 

Abstract 

Three molecular precursors to tungsten nitrides, WN(N3)3 •XCH3CN, 

WNjQCgHy^, and WN(N3)Cl2*2Py have been prepared. The explosive compound 

WN(N3)3-xCH3CN was prepared from the reaction of WNCI3 and NaN3 in 

acetonitrile at room temperature. The IR spectrum of this compound indicated that the 

W=N multiple bond (1050 cm'^) still remained, and the chloride was completely 

replaced by azide. The reaction of WNQ3 and NaN3 in refluxing acetonitrile, 

however, produced a complex with a composition of WN^oC5H7 5. The XPS study 

indicated that the tungsten atom in this complex was in an oxidation state lower than 

+6. The reaction of WNQ3 and NaN3 in refluxing pyridine yielded a complex with 

a composition of WN(N3)Cl2(Py)2- The substitution of chloride by azide was not 

complete in this reaction. By replacement of CH3CN with Py in WN(N3)3 •XCH3CN, 

the thermal decomposition of WN(N3)3-xPy was attempted in refluxing 1,2-
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dichlorobenzene (b.p. 186°C). However, the azide did not decompose completely as 

noted by a strong band at ~2030 cm"^ in the IR spectrum of the product. Further 

thermal treatments produced an amorphous phase (500°C) and a hexagonal WN phase 

(750®C). The amorphous phase had a composition close to WN2 based on the 

tungsten analysis. 

Introduction 

Due to the thermodynamic instability of transition metal nitrides with respect to 

the corresponding metal elements and molecular nitrogen, traditional methods 

involving high temperature reactions were found to restrict the number and types of 

transition metal nitrides.Therefore, "turning down the heat"^ is one important 

strategy to the metal nitride synthesis. Low temperature reactions of precursor 

compounds with appropriate nitriding reagents in polar organic solvents may be a good 

direction to investigate.'^ 

WNCl3^ was considered as a potential intermediate to the desired tungsten nitrides 

in our research. It has been known that WNCI3 in the presence of acetonitrile exists 

in the form of a tetrameric molecule [WNQ3-NCCH3J4 at room temperature.^ 

Therefore, the chloride could be replaced by other nitriding reagents, such as N^", N3*, 

N2^", in an acetonitrile solution. The replacement of chloride in metal halides by N3" 
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has been reported. For example, the explosive compounds MoN(N3)3(bpy) and 

MoN(N3)3(py)2 can be prepared from the reactions of excess trimethylsilyl azide with 

MoCl^Cbpy) and MoQ4(py)2, respectively.^ 

In this paper, the reactions between WNQ3 and NaN3 in acetonitrile and pyridine 

will be discussed. Furthermore, thermal decomposition studies of ±e reaction products 

are examined. 

Experimental 

Materials 

Most materials used in this study are air and moisture sensitive. Manipulations 

of oxygen- and water-sensitive materials were performed under inert-atmosphere 

conditions using standard drybox, high vacuum manifold, and Schlenk techniques. 

Acetonitrile, pyridine, and dichlorobenzene were dried with CaH2, and distilled 

onto 4A molecular sieves. Tungsten hexachloride was obtained from Alfa Chemical 

Co. and sublimed under dynamic vacuum at 120-I60°C to remove the more volatile 

WOCI4 impurity. Trimethylsilyl azide and NaN3 were obtained from Aldrich 

Chemical Company, Inc., and used as received. WNQ3 was prepared as described.^ 



www.manaraa.com

44 

Analytical Procedures 

Tungsten analysis 

Gravimetric determination of W was accomplished by conversion of samples to 

the trioxide via addition of an oxidizing solution in a tared crucible. Samples were 

initially treated with dilute (3M) nitric acid and then with concentrated nitric acid. The 

crucibles were gently heated (~100°C) on a hot plate to slowly evaporate the solution. 

Once the solution was evaporated, the temperature of the hot plate was increased (-150 

®C), and the crucibles were heated at this temperature until the samples became 

yellow. The crucibles were heated at 800°C in a muffle furnace until constant weights 

were achieved. 

Chlorine analysis 

Chlorine was determined by the potentiometric titration of neutralized solutions 

of dissolved sample with a standardized AgN03 solution. Ag/AgQ was used as the 

working electrode and a silver electrode as the reference. Samples were dissolved in 

a basic solution (KOH) with 30 % H2O2, and gently heated on a hot plate until ^2^2 

completely decomposed. The clear solutions were then neutralized with 3N nitric acid 

to pH ~ 6-7. 
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Nitrogen, carbon, and hydrogen analysis 

The nitrogen, carbon, and hydrogen analyses were obtained from Gaibraith 

Laboratories, Inc. and the ISU Chemistry Department Instrument Services. 

Physical Measurements 

Infrared spectroscopy 

Infrared spectra were obtained on a Bomem MB-Series Fourier transform infrared 

spectrometer. The samples were prepared as Nujol mulls and pressed between Csl 

plates. The spectra were recorded in the range of 4000 to 185 cm'^ 

X-ray powder diffraction 

X-ray powder diffraction data were obtained from a Phillips ADP3520 X-ray 

powder diffractometer using Cu Ka^ radiation (k = 1.54056 A). 

X-ray photoelectron spectroscopy 

XPS spectra were collected at room temperature with a Physical Electronics 

Industries 5500 multitechnique surface analysis system. This system was equipped 

with a hemispherical analyzer, a toroidal monochromator, and multichannel detector 

which sampled a 2 mm area. The samples were pressed onto an indium substrate and 
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loaded into an air-sensitive sample holder in the drybox. The sample holder was then 

transferred to the chamber of the spectrometer. After the system was completely 

evacuated, the sample holder was opened and the sample was excited with 

monochromatic Mg radiation (1253.6 eV) at a power of 300 W. The photoelectron 

binding energies (EE's) were calibrated with C Is BE = 284.6 eV. 

Synthetic Procedures 

Caution. The following preparations involve explosive materials, azides. Care 

should be taken to do the reactions on a small scale (less than one gram of reactant 

mixture) with adequate safety precautions. 

Preparation of WN(N3)3-xNCCH3 

A typical preparation involved placing 0,5 g (0.164 mmol) of WNCI3 and 0.33 g 

(0.508 mmol) of NaN3 into a 100 mL reaction flask. Approximately 50 mL 

acetonitrile was distilled onto the mixture, and a deep orange solution formed. The 

solution was stirred under flowing N2 at room temperature for 36 hrs, and an orange 

solid and a red solution were separated by filtration. The solid was examined by X-

ray powder diffraction, and indicated mainly NaQ and a trace of NaN3. The orange 

color was due to a small amount of the main product mixed with NaQ. Attempts to 
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obtain this a2ddotiingsten nitride by the removal of acetonitrile solvent were not 

successful due to the extremely explosive nature of the product. Yet, a small amount 

(~1.0 mg) of this azidotungsten nitride was obtained for an IR study. IR (Nujol, cm' 

^): a)(C=N), 2303 w, 2282 w; d(N-N-N), 2071 s; v(WsN), 1050 s. 

Preparation of WN^QCgHy^ 

The preparation was conducted with 0.5 g (0.164 mmol) of WNQ3 and 0.33 g 

(0.508 mmol) of NaN3 placed into a 100 mL reaction flask, followed by distilling 50 

mL acetonitrile onto the mixture. The reaction was carried out under flowing N2 at 

reflux (81°C) for 48 h. A dark brown solid and black solution were separated by 

filtration. The solid was examined by X-ray powder diffraction, and indicated mainly 

NaCl and a trace of NaN3. By removal of solvent from the filtrate, -0.6 g of black 

solid was obtained. IR (Nujol, cm"^): v(N-N-N), 2089 s. Anal. Calcd for 

WN10C5H7 5: W, 46.98%; N, 35.77%; C, 15.33%; H, 1.92%. Found: W, 46.50%; 

N, 34.88%; C, 14.92%; H, 1.96%; Q < 0.7%; N:W = 9.85; C:W = 4.92; H:W = 7.71. 

Preparation of WN(N3)Cl2*2Py 

A typical preparation involved placing 0.5 g (0.164 mmol) of WNCI3 and 0.33 g 

(0.508 mmol) of NaN3 into a l(X) mL flask, and the addition of 50 mL pyridine by 

distillation onto the mixture. The solution was heated to reflux (115®C) under flowing 
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N2 for 48 h, A brown solid and deep red solution were separated by filtration. The 

solid was examined by X-ray powder diffraction, which indicated NaQ and NaNj. 

By removal of solvent from the filtrate, a deep red solid was obtained (yield: 85%). 

Anal. Calcd for WN(N3)a2-2Py: W, 39.21%; Q, 15.14%; N, 17.92%; C, 25.60%; H, 

2.13%. Found: W, 37.96%; CI, 15.04%; N, 15.49%; C, 25.01%; H, 2.54%. a:W, 

2.05:1; N:W, 5.36:1; C:W, 10.09; H:W, 12.30:1. IR (Nujol, cm-^): d(N-N-N), 2076 

s; dCC-C, C-N, ring stretching), 1602 m; \)(in-plane C-H deformation), 1216 m, 1154 

w, and 1064 sh; \)(in-plane ring bend), 1026 w; -uCWsN), 998 m; ^(out-of-plane C-H 

deformation), 936 w; \)(W-C1), 395 m, 287 m. 

Thermal decomposition of WN(N3)3'xNCCH3 

A general procedure for the thermal decomposition of the azidotungsten nitride 

WN(N3)3-xNCCH3 is as follows. Before removing the acetonitrile solvent from the 

reaction flask, 5 mL of pyridine was added by syringe, and then the solvents were 

removed at room temperature in vacuo. In order to completely remove the acetonitrile, 

10 mL of pyridine was added again, and a deep red solution was obtained. The deep 

red solution was then re-evaporated, and a dark red solid was obtained. To the flask 

containing the dark red solid, 40 mL of 1,2-dichlorobenzene was added by syringe. 

The mixture was then heated at reflux for 48 h. A black solid was obtained by 

filtration, washed with 1,2-dichloroethane to remove any residual 1,2-dichlorobenzene, 
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and then dried under dynamic vacuum overnight. Anal, Found: W, 64.8%; CI < 1.0%. 

ir (Nujol, cm'^): d(N-N-N), 2026 s; ̂ (C-C, C-N, ring stretching), 1600 w; d(in-plane 

C-H deformation), 1216 w, 1153 w, and 1064 sh; "uCin-plane ring bend), 1011 sh; 

d(out-of-plane C-H deformation), 936 w. 

Results and Discussion 

Reactions of WNCI3 with NaN3 in different solvents 

In acetonitrile at room temperature. A general reaction for the preparation of 

WN(N3)3-xNCCH3 can be expressed as follows, 

CH3CN 
WNCI3 + 3NaN3 > WN(N3)3 + 3NaCl 

In order to avoid the reaction between WNQ3 and CH3CN,® the reaction was run at 

room temperature. The main product was quite soluble in acetonitrile. The solid 

phase was basically the NaCl by-product which was identified by X-ray powder 

diffraction. By removing the acetonitrile solvent from the filtrate, a red solid was 

obtained. However, it is impossible to recover this red solid in a large yield because 

of the extremely explosive nature of the compound. 



www.manaraa.com

In acetonitrile at reflux (8PC). Three reactions appear to take place under reflux 

conditions: the expected substitution reaction of Q" by N3"; the reaction between 

WNCI3 and acetonitrile;^ and a nucleophilic attack by azide on the carbon atoms of 

the nitrile groups in [WNQ3 •NCCH3]4. Therefore, the reaction of WNCI3 and NaN3 

in acetonitrile at reflux was much more complicated than the reaction at room 

temperature. The nucleophilic attack by the azide can be catalyzed by a acid.^ For 

example, BF3, a Lewis acid, catalyzed the formation of 5-substituted tetrazoles through 

nucleophilic attack of azide on the carbon atoms of the nitrile groups. For the reaction 

of WNCI3 and NaN3 in refluxing acetonitrile, WNQ3 acts as a Lewis acid, where the 

coordination of WNCI3 with the acetonitrile nitrogen generates a +5 charge on the 

nitrile carbon and facilitates the nucleophilic attack of the azide on the carbon atom 

of the nitrile group. A single crystal structure and NMR study would help to better 

understand this reaction, however, the product was not soluble in any of the common 

organic solvents such as acetonitrile, 1,1-dichloromethane, THF, and methanol. 

Chemical analyses on the black product provided a composition close to WNjqC^H^ 5, 

and only a trace of chlorine was found. These results indicated that the replacement 

of chloride by azide was complete. 

In pyridine at reflux (115°C). Solvent effects play an important role in the 

structural form of WNCI3. It was reported that WNCI3 existed as a WNCl3(Py)3 
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monomer instead of a tetramer.^ The reactivity of this WNCl3(Py)3 monomer is quite 

different from the [WNQ3 •NCCH3J4 tetramer. When the substitution reaction of 

chloride by azide was carried out in refluxing pyridine, a deep red, soluble product was 

obtained. Chemical analyses of the main product provided a composition of 

^^^2.05^5.36^10.09^12.30' which is close to that expected for WN(N3)Cl2*2(C5H5N). 

The insoluble by-products were identified by X-ray powder diffraction as NaCl and 

NaN3. Therefore, only one chlorine can be replaced by azide, and the reaction is then 

expressed as follows: 

Py 
WNCI3 + NaN3 > WN(N3)a2 + NaQ 

Infrared spectroscopy 

Infrared spectroscopy has been used extensively to characterize nitridometai 

chloride compounds. Its utility is based on the strong stretching mode of the M=N 

multiple bonds and the sensitivity of the M-Cl stretching frequencies. Any reactions 

on nitrogen or chlorine will result in large changes in the IR spectra. 

The IR spectrum of WN(N3)3-xNCCH3 is shown in Figure 1. A strong band at 

2071 cm'^ can be assigned to the N-N-N stretching mode. Another strong band at 

1050 cm'^ can be assigned to the W=N stretching mode. This observation indicates 

that the WsN-W bridging bonds may remain after the replacement of CI' by N3', and 

the tetrameric core W4N4 may remain as well. The weak bands at about 2300 cm'^ 
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are due to the coordinated acetonitrile. A strong band at 419 cm'^ which is not 

observed in the IR spectrum of [WNQ3-NCCH3]4, may be due to the W-N stretching 

mode. The absence of bands corresponding to W-Q vibrations (-350 cm'^) indicate 

that the reaction undergoes complete replacement of chloride by azide. 

Figure 2 shows the IR spectrum of "WNjoC5H7 5". A strong band at 2089 cm'^ 

can be assigned to the N-N-N stretching mode. The absence of bands corresponding 

to the WsN (1000-19(X) cm'^) and the W-Cl vibrations (~350 cm'^) indicated that the 

WsN multiple bond was broken and the chloride was completely replaced by azide. 

The breaking of the WsN multiple bond may be due to its direct involvement in the 

reaction between WNCI3 and acetonitrile.^ 

The IR spectrum of WN(N3)Cl2'2Py is shown in Figure 3. A strong azide (N-N-

N) stretching band was observed at 2076 cm'^ The W-Cl vibration bands were found 

in the 400-280 cm'^ range, which indicated that the chloride was only partially 

replaced by azide. A medium sharp band at 998 cm*^ may be due to the W=N: 

terminal bond vibration.^ 

X-ray photoelectron spectrum of "WNjoC5H7^" 

XPS was used to obtain W and N binding energies and provide further 

information about the possible oxidation states of tungsten. The W4f and Nls XPS 

spectra of "WN^qCjH^ 5" are shown in Figure 4. There is only one type of tungsten 
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Figure 2. Infrared spectrum (Nujol) for "WNjQC^Hyg". 
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Figure 4. XPS spectra of "WN10C5H7 5", (a) W4f and (b) Nls. 
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Table 1. XPS binding energies (eV) of WNQg and "WN10C5H7 5" 

Compound W4f7/2 W4f5/2 Nls 

WNCI3 34.7 36.8 397.5 

"WN10C5H7.5" 33.5 35.7 397.0, 398.9, 400.1 

observed in the W4f XPS spectrum. The calibrated binding energies of 

W4f5y2 are 33.5 and 35.7 eV , respectively. Three types of nitrogen were necessary 

to fit the Nls XPS spectrum, and the calibrated binding energies of Nls were 397.0, 

398.9, and 400.1 eV. 

For comparison. Table 1 lists the W4f and Nls binding energies of WNCI3. It is 

noted that the W4f binding energies of "WN|oC5Hy 5" are about 1.0 eV lower than the 

values of WNCI3. This result indicates that the tungsten atom in "WNjoC5Hy 5" is in 

an oxidation state lower than +6. The value of 397.0 eV is typical for the Nls binding 

energy of a nitride (N^*).^® The Nls binding energy of the bridging nitrogen in azide 

(N-N*-N) is always higher than that of the terminal nitrogen atoms (N*-N-N*). 

Therefore, the band at 400.1 eV can be assigned as the bridging nitrogen in azide, and 

the band at 398.9 eV assigned to the terminal nitrogen atoms in azide. The band at 

398.9 eV may also be the binding energy of the nitrogen atom in a nitrile by 

comparison to the binding energy of PhCN (399.2 eV).^® 
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Thermal decomposition of WN(N3)3'xNCCH3 

Since it was very difficult to recover WN(N3)3 •XNCCH3 from the reaction 

vessels, attempts to thermally decompose this azidotungsten compound in solution 

seemed like a reasonable idea. However, if the acetonitrile molecules were still 

coordinated to tungsten, the reaction would not proceed cleanly. Therefore, the 

acetonitrile must be either removed or replaced by a more unreactive molecule, before 

conducting the thermal decomposition reaction. Pyridine was chosen to replace 

acetonitrile. Moreover, the thermal decomposition should be carried out in a more 

inert solvent with high boiling point. 

An attempt to thermally decompose WN(N3)3 xPy in chlorobenzene (b.p. 131°C) 

was not successful. The azidotungsten nitride was only slightly soluble in 

chlorobenzene, and thus most of the materials remained in the solid state. Once the 

temperature increased, an explosion occurred! 

Fortunately, the azidotungsten nitride pyridine adduct was quite soluble in 1,2-

dichlorobenzene (b.p. 186°C). Thermal decomposition of this explosive material was 

successful in dichlorobenzene, and a black solid was obtained. Both the chlorine and 

tungsten analyses were obtained on this black solid. The results corresponded to 

64.8% tungsten, and less than 1,0% for chlorine. An ER spectrum of the black product 

is shown in Figure 5. A N-N-N stretching band at 2026 cm'^ was observed, which 

indicated the presence of end-on azide ligand. Therefore, the azide did not completely 
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Figure 5. Infrared spectrun\ (Nujol) for the product from thermal decomposition of WN(N3)3-xPy 

in 1,2-dichlorobenzene. 
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Table 2. Results of tungsten analyses for the samples prepared by heating the black 
solid (obtained from thermal decomposition of WN(N3)3-x^ in 1,2-dichlorobenzene) 
under dynamic vacuum (5 x 10'^ torr) at different temperatures 

Temperature (°Q Time (h) W% Phase 

250 4 69.47 amorphous 

350 5 74.90 amorphous 

500 12 86.1 amorphous 

750 12 92.8 Hexagonal WN 

decompose in this thermal decomposition reaction. Some bands attributed to 

coordinated pyridine were also observed (1600,1216,1153,1064,1011 and 936 cm*^). 

In order to decompose the azide completely, and to obtain pure nitride compounds, 

thermal treatments of the black solid were carried out under dynamic vacuum in a 

programmable tube furnace. Table 2 lists the thermal decomposition results. The X-

ray powder patterns for samples from 500 °C and 750 °C are shown in Figures 6 and 

7, respectively. 

From Table 2, one can see that the sample from the 750 ®C treatment contained 

92.8 % of W, which is very close to the calculated value for WN, 92.92%, The X-ray 

powder pattern of this sample indicated that the sample contained mainly hexagonal 

WN (or perhaps WN^Cj.^). The sample from the 500 °C treatment contained 86.1% 
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Figure 6. X-ray powder diffraction pattern of the sample prepared by heating the black solid (obtained from thermal 

decomposition of WN(N3)3-xPy in 1,2-dichlorobenzene) under dynamic vacuum (5 x 10'^ torr) at 500°C. 
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Figure 7. X-ray powder diffraction pattern of the sample prepared by heating the black solid (obtained from thermal 

decomposition of WN(N3)3*jtPy in 1,2-dichlorobenzene) under dynamic vacuum (5 x 10'^ torr) at 750°C. 
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of W, which is very close to the calculated value for WN2, 86.78%. However, this 

is an amorphous material as indicated by its X-ray powder diffi^tion pattern. 

Conclusions 

This paper describes the preparation and characterization of three molecular 

precursors to tungsten nitrides, WN(N3)3-xCH3CN, WNjqC5H-7 5, and 

WN(N3)Q2*2Py. The most interesting compound WN(N3)3 •XCH3CN was prepared 

from the reaction of WNCI3 and NaN3 in acetonitrile at room temperature. The IR 

spectrum of this compound indicated that the WsN multiple bond still remained, and 

the chloride was completely replaced by azide. However, this compound is extremely 

explosive, and it can not be isolated from the acetonitrile solution in a large yield. 

The reaction of WNQ3 and NaN3 in refluxing acetonitrile, however, produced a 

complex with a composition of WN2qC5H-7 5. The XPS study indicated that the 

tungsten atom in this complex was in an oxidation state lower than +6. 

The reaction of WNQ3 and NaN3 in refluxing pyridine yielded a complex with 

a composition of WN(N3)Cl2(Py)2- substitution of chloride by azide was not 

complete in this reaction. 

By replacement of CH3CN with Py in WN(N3)3 •XCH3CN, the thermal 

decomposition of WN(N3)3 *xPy was successful in refluxing 1,2-dichlorobenzene (b.p. 



www.manaraa.com

64 

186°C). However, the azide did not decompose completely as noted by a band at 

~2030 cm"^ in the IR spectrum of the product. Further thermal treatments were 

carried out under dynamic vacuum in a programmable tube furnace on the product 

obtained from refluxing 1,2-dichlorobenzene. An amorphous phase was produced at 

5(X)°C. This amorphous phase had a composition close to WN2 based on the tungsten 

analysis. Furthermore, a hexagonal WN phase was observed in the product obtained 

at 750°C. 
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CHAPTER 3. SYNTHESIS AND CHARACTERIZATION OF 
NOVEL TUNGSTEN NITRIDES AND CARBIDE NITRIDES 

A paper to be submitted to Chemistry of Materials 

Zhihong Zhang and Robert E. McCarley 

Abstract 

A new bulk solid phase of tungsten nitride W3N5 has been prepared through solid 

state reactions between WNCI3 and Zn3N2 in sealed Pyrex tubes at 400 °C. The XPS 

study indicated that the oxidation state of tungsten in this amorphous phase was +5. 

Heating W3N5 at 600°C in sealed quartz tubes yielded a cubic tungsten mononitride 

phase (WN) with rock salt structure (a = 4.171 A), Heating W3N5 at 800 ®C in sealed 

quartz tubes produced the hexagonal WN phase and tungsten metal. At the same time, 

a few golden crystals were also obtained, which were grown via a chemical vapor 

transport reaction. The golden compound W2N2(C2N2) crystallizes in the monoclinic 

system, space group I2la (#15, nonstandard setting) with a = 5.6521(9) k, b -

4.889(1) A, c = 9.576(1) A, P = 90.20(1)°, V = 264.6(1) A^ Z = 4, /? = 0.035, and Rw 

= 0.042. The structure of W2N2(C2N2) consists of W2 dimers, hydrazido ligands N2'*", 

and 1,4-diazabutenido ligands represented by three resonance structures, [N-C=C-N]^", 

[NsC-C-N]*^', and [N-C-C=N]^". The metal to hydrazido nitrogen bond distances fall 



www.manaraa.com

67 

in the range 1.97(4) to 2.19(4) A, and the metal-diazabutenido nitrogen distances show 

a more limited range from 2.01(4) to 2.07(3) A. The hydrazido N-N distance is 

1.43(5) A, and the diazabutenido C-C distance is 1.59(4) A. The W-W single bond 

distance is 2.767(2) A. The magnetic susceptibility measurements over the range 6-

300 K indicated that the cubic WN was basically diamagnetic and not a 

superconductor above 6 K, The electronic structure calculations suggested, however, 

that this cubic phase might exhibit superconductivity because of the high density of 

states at the Fermi level. 

Introduction 

The binary nitride compounds of Group VI elements are characterized by 

thermodynamic instability towards dissociation to N2 and the N-saturated element at 

high temperatures.^ Thermodynamic studies on M02N indicated that the Gibbs free 

energy change of formation of M02N increased with the increase of temperature.^"^ 

Therefore, only a few binary nitrides of Group VI metals have ever been found, even 

though considerable synthetic efforts using high temperature solid state reactions have 

been devoted to preparing these binary nitrides. 

As for binary tungsten nitrides, although a number of hexagonal tungsten nitrides 

with the metal in oxidation states higher than +3 have been reported, these binary 
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nitrides can only be prepared as thin films and observed by electron microscopy. For 

example, WN2 with a hexagonal supercell (a = 2.89 A and c = 16.4 A) was observed 

as a brown coating on W filaments.^ W3N5 was also observed as a thin film,^ and has 

a hexagonal supercell with a = 2.89 A and c = 10.8 A. No bulk tungsten nitride 

phases with oxidation states of the metal higher than +3 have ever been prepared using 

high temperature solid state synthesis. 

The bulk solid phases of molybdenum and tungsten nitrides, MN and M2N (M = 

Mo, W) with the metals in oxidation states +3 or lower than +3, were prepared by 

'J 
flowing NH3 over metals at high temperatures. For example, tungsten mononitride 

(WN) was reported to have a hexagonal WC structure type with a = 2.893 A and c = 

2.826 A. 

It has been known that most early transition metal mononitrides with rock salt 

Q 
structure exhibit superconductivity. For example, NbN shows superconductivity at 

17.3K. However, cubic molybdenum and tungsten mononitrides with rock salt 

o g 
structure, which may exhibit superconductivity, have not yet been reported. Cubic 

MoN with rock salt structure was predicted to be a superconductor with the value of 

as high as 29K,^ even though this compound is unknown. 

Recentiy, new synthetic techniques of converting molecular precursors to the 

target products under more gentle conditions have been explored.^ Parkin and co

workers attempted to convert metal halides to nitrides, which was successful for most 
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early transition metals, but not for the Group VI metals. They attempted to convert 

M0CI3 and WCI4 to the nitrides by reaction with magnesium or calcium nitride at 500 

°C. However, only the metals were obtained.^ ̂  Our synthetic strategy to prepare 

binary tungsten nitrides involved the conversion of molecular precursor WNQ3 and 

related compounds to nitrides through metathetical reactions with other metal nitrides 

at relatively low temperatures. 

In this paper, a bulk solid tungsten nitride phase W3N5, which was prepared by 

a solid state metathetical reaction between WNCI3 and Zn3N2 at relatively low 

temperature, will be reported. A cubic tungsten mononitride phase and a tungsten 

carbide nitride W2N2(N2C2) with a novel three dimensional network structure will be 

reported as well. 

Experimental 

Materials 

Most reagents are air and moisture sensitive. Manipulations of oxygen- and 

water-sensitive materials were performed under inert-atmosphere conditions using 

standard drybox, high vacuum manifold, and Schlenk techniques. 

Acetonitrile (MeCN) and 1,2-dichloroethane (DCE) were dried by standard 
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methods using CaH2 as a drying reagent Zn3N2 was obtained from Alfa Chemical 

Co, and was used as received. Trimethylsilyl azide was obtained from Aldrich 

Chemical Company, Inc., and used as received. WNa3 was prepared as described in 

literature. 

Analytical Procedures 

Tungsten analysis 

Gravimetric determination of W was accomplished by conversion of samples to 

the trioxide via addition of an oxidizing solution in a tared crucible. Samples were 

initially treated with dilute (3M) nitric acid and then with concentrated nitric acid. The 

crucibles were gently heated (~100 °C) on a hot plate to slowly evaporate the solution. 

Once the solution was evaporated, the temperature of the hot plate was increased (-150 

°C), and the crucibles were heated at this temperature until the samples became 

yellow. The crucibles were heated at 800 °C in a muffle furnace until constant 

weights were achieved. 

Chlorine analysis 

Chlorine was determined by the potentiometric titration of neutralized solutions 

of dissolved sample with a standardized AgN03 solution. Ag/AgCl was used as the 

working electrode and a silver electrode as the reference. Samples were dissolved in 
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a basic solution (KOH) with 30 % H2O2, and gently heated on a hot plate. The clear 

solutions were then neutralized with 3N nitric acid to pH ~ 6-7. 

Physical Measurements 

X-ray powder diffraction 

X-ray powder diffraction data were obtained from a Phillips ADP3520 X-ray 

powder diffr^tometer using Cu Kttj radiation (k = 1.54056 A). 

X-ray photoelectron spectroscopy 

XPS spectra were collected at room temperature with a Physical Electronics 

Industries 5500 multitechnique surface analysis system. This system was equipped 

with a hemispherical analyzer, a toroidal monochromator, and multichannel detector 

which sampled a 2 mm area. The samples were pressed on to an indium substrate 

and loaded into an air-sensitive sample holder in the drybox. The sample holder was 

then transferred to the chamber of the spectrometer. After the system was completely 

evacuated, the sample holder was opened and the sample was excited with 

monochromatic Mg radiation (1253.6 eV) at the power of 300 W. The 

photoelectron binding energies (BE's) were calibrated with C Is emission, BE = 284.6 

eV. 
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Magnetic susceptibility measurements 

Magnetic susceptibilities were measured with a Quantum Design SQUID 

magnetosusceptometer. The samples were prepared by sealing 20-50 mg of material 

in a quartz tube (3mm ID, 4mm OD, and 17mm L) under a helium atmosphere (less 

than 0.1 torr). The data were collected over the temperature range of 4-300 K at 3 

tesla. 

Synthetic Procedures 

Caution. The following preparations are exothermic, and involve releasing 

nitrogen gas. Care should be taken to do reactions with adequate safety precautions. 

It is important to calculate the pressure generated by the nitrogen gas byproduct before 

performing any reactions, since high gas pressure can lead to explosions. It is also 

important to use a programmable furnace, and increase reaction temperature slowly (1-

2°/min) when conducting any reactions. 

Preparation of W3N5 

In a typical preparation of W3N5, 0.288 g (0.95 mmol) of WNCI3 and 0.106 g 

(0.473 mmol) of Zn3N2 were mixed in the drybox (in order to avoid explosion, ZnQ2 

(50%, weight) can be added into the reaction mixture, if it is necessary), and loaded 

into a Pyrex tube (8 mm ID, 10 mm OD, 100 mm length). The tube was then sealed 
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under dynamic vacuum, and placed into a programmable tube furnace. The 

temperature was increased at a rate of 2 °C/min to 400 °C, and held at 400 °C for 48 

hours. A black solid mixed with some white solid (ZnCl2) was obtained. The white 

solid was removed by washing the solid mixture with acetonitrile. Chlorine analyses 

indicated that less than 0.5% remained in the samples. Tungsten analysis was obtained 

on the black solid and found to match the tungsten nitride with a composition of 

W3N5. Anal. Calcd for W3N5: W, 88.73%. Found: W, 88.85%. 

Preparation of cubic WN 

0.25 g of W3N5 was loaded into a quartz tube (8-mm OD, 6-mm ID, and 150-mm 

long) in the drybox. The tube was then sealed under dynamic vacuum, and placed into 

a tube furnace. The reaction was fired at 600 ®C for 2 days. A black solid was 

obtained. Anal. Calcd for WN: W, 92.92%. Found: W, 92.26%. 

Single crystal growth of W2N2(N2C2) 

0.1 g of W3N5 was weighed in a drybox and transferred into a quartz tube (10 

mm OD, 8 mm ED, and 80mm length). The tube was sealed under dynamic vacuum 

(< 5.0 X 10" torr), and then placed into a programmable tube fiimace. The 

temperature was increased at a rate of 5 °C/min to 800 °C, and held there for 3-4 days. 

A few golden crystals were found in the cool zone of the tube. The residual black 
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powder, examined by X-ray powder dif&action, contained tungsten metal and 

hexagonal tungsten mononitride (WN). 

Electronic Structure Calculations 

All electronic structure calculations were of the extended Hiickel tight-binding 

type.^^ The observed lattice parameters of cubic WN were obtained by X-ray powder 

diffraction. Atomic orbital parameters for all atoms, listed in Table 1, and charge 

iteration parameters for W and N were taken from standard sources.DOS and 

COOP curves were evaluated using 465 k-points sets. 

Table 1. Atomic Parameters Used in the Extended Hiickel Calculations 

atom orbital //jj(eV) 

W 6s -8.26 2.34 
6p -5.17 2.31 
5d -10.37 4.98 0.6683 2.070 C5G2 

N 2s -26.00 1.95 
2p -13.40 1.95 

X-ray Structure Determination 

A suitable golden single crystal with dimensions of 0.10 x 0.06 x 0.01 mm^ was 

selected from the transported reaction product. The crystal was then encased in epoxy 
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resin while in a glove bag under a nitrogen flow, attached to the tip of a glass fiber, 

and sealed in a glass capillary. AU measurements were made on a Rigalcu AFC6R 

diffractometer with graphite monochromated Mo Ka (X = 0.71069 A) radiation and 

a 12 KW rotating anode generator. 

Cell constants and an orientation matrix for data collection, obtained from a least-

squares refinement using the setting angles of 19 carefully centered reflections in the 

range 11.0 < 20 < 30.0, corresponded to monoclinic cell with cell parameters: a = 

5.6521(9) Kb = 4.889(1) A, c = 9.576(1) A, p = 90.20(1)°, and = 264.6(1) P. 

The data were collected at room temperature using the co-20 scan technique over the 

range 4° < 20 < 65° in the hemisphere (±h, +it, ±[). Three standard reflections were 

monitored every 150 reflections and showed no intensity variation over the collection 

period. A total of 2121 reflections were collected, of which 1064 were unique (/?,-^ 

= 0.104) and 148 of which were observed with I > 3.00a(/). No Decay correction was 

applied. With an absorption coefficient for Mo Ka radiation of p = 885.1 cm'\ an 

empirical absorption correction using the \j/ scan technique was applied after the 

structure solution. The data were corrected for Lorentz and polarization effects. 

The monoclinic space group was /2/a (#15, non-standard setting) was chosen on 

the basis of systematic absences and intensity statistics. The structure was solved by 

the SHELXS direct methodswhich yielded the positions of the tungsten atoms. 

Successive Fourier electron difference maps yielded the positions of the nitrogen 
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atoms. The structure was then refined by fiiU-matrix least-squares methods with 

anisotropic thermal parameters on all non-hydrogen atoms. The final cycle of full-

matrix least-squares refinement was based on 148 observed reflections and 19 variable 

parameters and converged with unweighted and weighted agreement factors of R = 

0.044 and Rw = 0.054, respectively. The asymmetric unit was found to be WN2. 

However, the maximum peak in the final difference Fourier map was still 

relatively large (5.48e7A^). By refining this maximum peak as a carbon atom, 

isotropic refinement was successful. An empirical absorption correction using the 

DEFABS program^^ was then applied, resulting in relative transmission factors 

ranging from 0.78 to 1.16, The final cycle of full-matrix least-squares refinement was 

based on 148 observed reflections and 23 variable parameters and converged with 

unweighted and weighted agreement factors of ^ = 0,035, and Rw = 0,042, and the 

maximum peak in the final difference Fourier map decreased to 2.69e7A^. The 

asymmetric unit was then WCN2. All calculations were performed using the 

TEXSAN^^^ crystallographic software package of Molecular Structure Corporation. 

The crystallographic data and refinement results are given in Table 2, Positional 

parameters and isotropic equivalent temperature factors are given in Table 3. The 

anisotropic temperature factors are listed in Table 4, 
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Table 2. Crystallographic data for W2N2(N2C2) 

Empirical Formula 
Formula Weight 
Crystal Size 
Crystal System 
Space Group 
Lattice Parameters 

Volume 
Z Value 

Calculated Density 

^000 
p(MoKa) 
Diffractometer 

Radiation 

Temperature 

Two-theta Range 

Scan Mode 
No. of Reflections Collected 
No. Observations (I > 3.(X)a(I)) 

No. Variables 
Max Shift/error in Final Cycle 

Goodness of Fit^ 

Max. and Min. Peaks in the Rnal Diff. Map 

Residuals'' 

W2N4C2 
447.75 

0.10 X 0.03 X 0.01 mm^ 
monoclinic 

I2/a (#15, non-standard setting) 
a = 5.6521(9) A 
b = 4.889(1) A 
c = 9.576(1) A 
p = 90.20(1)° 

264.6(1) A^ 

4 
11.237 g/cm^ 
752 

885.11 cm*^ 
Rigaku AFC6R 
MoKa (k = 0.71069A) 
23 °C 

0-65° 

Q)-20 

1064 

148 

23 
0.03 

1.64 

2.69, -3.13 eVA^ 
R = 0.035, Rw = 0.042 

^ Goodness of Fit = [I(b{|FJ - |F,l)2/{Noi« -

'' R = 2 I |Fo| - |Fc| I / S |Fo|; Rw = f( S w (|Fo| - |Fc|)^ / S w Fo^ )]"2. 
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Table 3. Atomic coordinates and equivalent isotropic thermal parameters (A^) of the 
atoms for W2N4C2 

atom X y z V 

W 0.3987(2) 0.2421(4) 0.1151(1) 0.27(5) 

Nl 0.668(3) 0.471(8) 0.056(2) 0.1(3) 

N2 0.402(4) 0.441(6) 0.305(2) 0.3(4) 

C 0.655(4) 0.299(7) 0.301(3) 0.4(4) 

= 8/37c2(Uii(aa»)2 + UjjCbb*)^ + UggCcc*)^ + 2Ui2aa*bb*cos7 + 

2Uj3aa*cc*cosp + 2U23bb*cc*cosa) 

Table 4. Anisotropic thermal parameters^ (A^) of the atoms for W2N2(N2C2)^ 

Atom ^11 ^22 ^33 ^12 ^13 ^23 

W 0.0034(6) 0.0030(7) 0.0037(6) 0.002(1) -0.0003(3) 0.001(1) 

Nl 0.001(4) 

N2 0.003(4) 

C 0.005(5) 

^The coefficients Uy of the anisotropic tennperature factor expression are defined as 

exp(-27t2(a*^Unh2 + b*^U22k^ + + 2a*b*Ui2hk + 2a*c*Ui3hl + 

2b*c*U23kl)) 

^'Thermal parameters for Nl, N2, and C only refined isotropically. 
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Results and Discussion 

Synthesis of W3N5 

Metathetical reactions between Group VI metal chlorides and Group n metal 

nitrides at elevated temperature (> 500 °C) were attempted by Hector and Parkin. 

In both cases, however, no metal nitrides were obtained. Instead, pure metals were the 

products. The reactions indicated that the Group VI metal nitrides could not be 

prepared by metathetical solid state reactions at reaction temperature higher than 500 

°C, Therefore, reactions between WNQ3 and Zn3N2 at a relatively lower temperature 

range (300-500 °C) were attempted in sealed pyrex tubes. 

The intended reaction was 

400°C 
2WNCI3 + Zn3N2 -> 2WN2 + 3ZnCl2 

However, due to the instability of the tungsten nitride compounds, WN2 was not 

formed; instead, an amorphous compound W3N5 was produced. The composition of 

W3N5 was derived from the tungsten analysis. A pressure build-up was noted inside 

the reaction tube after the reaction, which indicated that N2 was released during the 

reaction. Therefore, the reaction can be expressed as 

400°C 
6WNa3 + 3Zn3N2 > 2W3N5 + Nj + 9Zna2 
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Other nitriding reagents, such as MgjNj, Ca3N2, CU3N and AIN, were also 

attempted, however, the reactions were not successful. 

Synthesis of cubic WN 

The thermal treatment of W3N5 in sealed, evacuated quartz tube at 600 °C 

resulted in the thermal decomposition of W3N5 to a cubic phase. Again pressure built-

up was noted inside the reaction tube. The tungsten analysis gave a result of 92.6%, 

which is very close to the composition of WN. The thermal decomposition reaction 

can be expressed as 

eoo-'c 
W3N5 > 3WN + N2 

With respect to hexagonal WN and elemental W, the cubic WN is a metastable 

phase. Upon annealing the cubic WN at 800 °C, the cubic phase partially transformed 

to the hexagonal phase, and partially decomposed to elemental tungsten. 

Synthesis of W2N2(N2C2) via chemical transport reaction 

The thermal treatment of W3N5 in a sealed, evacuated quartz tube at 800 °C 

resulted in the thermal decomposition of W3N5 to hexagonal WN as well as W metal. 

The products were identified by X-ray powder diffraction. The X-ray powder pattem 

is shown in Figure 1. The pressure also built up inside the reaction tube after the 
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reaction. Therefore, the reaction of thermal decomposition of W3N5 at 800 ®C could 

be expressed as 

800®C 
W3N5 > 3WN + N2 

800°C 
W3N5 > 3W + 5/2N2 

When annealing W3N5 in the sealed quartz tube at 800 °C, a few golden crystals 

were formed in the cool zone of the tube. The temperature difference between the hot 

and cool zone was about 50 °C. It is believed that this temperature difference caused 

the formation of the golden crystals via a chemical transport reaction, even though the 

mechanism of the chemical transport reaction has not yet been understood. The golden 

crystal was characterized as W2N2(N2C2) by X-ray single crystal diftraction. 

The reaction was repeatable. More than 20 reactions were conducted. The yield 

of the golden compound, however, was always low (a few crystals). In order to 

improve the yield of the golden compound, W2N2(N2C2), several different reactions 

were attempted. For example, the additions of carbon, cyanides, ethylenediamine, and 

dichloroethane, to the reaction mixture were explored. However, the yield could not 

be improved. Additions of NH3, NH4CI, and WNCI3 as transport reagents were also 

attempted, but unfortunately, the yield was not improved either. 



www.manaraa.com

laaoo-

(/5 
C 
2 5000H 
c 

0 -

w 

o 
o 

a = 2.899 A 
c = 2.832 A 

cs 
o 
o 

^ o o 
V—/ Q f—< 

CN ' 

J V 

^ > L, ^ L ^ 
o a ^ ̂  ^ 

AT iUA A 
60 

Two-Theta 

80 

Figure 1. X-ray powder diffraction pattern of WN and W mixture obtained from the reaction of annealing 

W3N5 at 800°C. 
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X-ray powder diffraction of cubic WN 

The X-ray powder diffraction pattern of the cubic phase WN is shown in Figure 

2. The broad reflection peaks may be due to either the small sizes of particles or poor 

crystallization of the sample. The indexed lines of the powder diffraction pattern are 

given in Table 5. The cubic phase, WN, has the NaCl structure with a = 4.171 A, 

which is smaller than the cell of the known cubic WC superconductor phase (a = 4.266 

A)^^. For comparison, the calculated d spacings of cubic WN and the observed 

d spacings of cubic WC are also listed in Table 5. 

Table 5. X-ray powder diffraction data for cubic WN (a = 4.171 A) and 

WC (a = 4.266 A) with NaQ structure 

WN WC 

<^obv ^cal ^cal 

1 1 1 2.408 2.408 2.463 

2 0 0 2.082 2.086 2.133 

2 2 0 1.472 1.475 1.508 

3 1 1 1.256 1.258 1.286 

2 2 2 1.207 1.204 1.231 
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Figure 2. X-ray powder diffraction pattern of cubic WN with NaCI structure. 
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Structure description of W2N2(N2C2) 

An ORTEP drawing of the structure of W2N2(N2C2) projected along the b axis 

is shown in Figure 3. It is seen that the structure consists of a network of dimers 

W2(N2)3/3(N3/3C2/2C2/2^3/3)' where the two bonded W atoms (d = 2.768(2) A) are 

bridged by a N-N (Nl) group in a p-r|^,r|^ manner. Each N atom (Nl) of the bridging 

N-N group also is bonded to one W atom of a neighboring dimer. The other N atom 

(N2) binds to a tungsten atom in each of three different dimers, while the C atom only 

binds to a tungsten atom in each of two different dimers. The N2 and C atoms form 

a N-C-C-N group. The two W atoms of any two neighboring dimers are bridged by 

9 9 
a C-N (N2) group in a p-ri ,ri manner as well. The dimers are linked together by the 

N-N and N-C-C-N groups to form a 3-dimensional network. Figure 4 shows the 

coordination environment of the W2 dimer core in W2N2(N2C2). 

In the W2N2(N2C2) structure, the W-W bond length is 2.768(2) A, which is a 

typical W-W single bond distance. Therefore, the tungsten atoms in the structure are 

probably in the oxidation state of V. The bond length of N-N in bridging N-N group 

is 1.43(3) A, which is a typical N-N single bond distance. Thus, the bridging N-N 

group can be considered as a hydrazido ligand, N2'^'. The N-C-C-N group then can 

be considered as a 1,4-diazabutenido ligand with bonding represented by three 

resonance structures, [N-C=C-N]^*, [N=C-C-N]^', and [N-C-C=N]^'. 

Figure 5 shows the coordination sphere of the tungsten atom (Wl). Selected 
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Figure 3. The ORTEP diagram of W2N2(C2N2) viewed down the b axis. 
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Figure 4. The coordination environment of a Wj dimer core in W2N2(N2C2). 
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Figure 5. The coordination sphere of the tungsten atom (Wl) in W2N2(N2C2). 
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bond lengths and bond angeles are given m Tables 6 and 7, respectively. Without 

considering the W2 atom, the W1 atom is coordinated by three N1 atoms (Nil, N12, 

and N13), three N2 atoms (N21, N22, and N23), and two C atoms (CI, and C2). If 

the centroids of N11-N12, N21-C1, and N22-C2 are considered as groups coordinated 

to Wl, the coordination configuration of W1 can be viewed as a distorted square 

pyramid. N11-N12, N13, N21-C1, and N23 form the square planar base, and the N22-

C2 group occupies the apex position of the square pyramid. 

Table 6. Selected bond distances (A) in W2N4C2 

atom atom distance atom atom distance 

Wl* W2* 2.768(2) Wl Nil 2.00(3) 

Wl N12 2.19(3) Wl N13 1.97(3) 

Wl N21 2.01(3) Wl N22 2.06(2) 

Wl N23 2.07(2) W2 Nil 2.19(3) 

W2 N12 2.00(3) Wl CI 2.33(4) 

Wl C2 2.31(3) Nil N12 1.43(4) 

N21 CI 1.59(4) CI C2 1.52(5) 

* Wl and W2 are symmetry related tungsten atoms. 
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Table 7. Selected bond angles (°) in W2N4C2 

atom atom atom angle atom atom atom angle 

W2 W1 Nil 51.8(7) W2 W1 N12 45.7(7) 

W2 W1 N13 103.9(6) W2 W1 N21 130.1(7) 

W2 W1 N22 134.9(6) W2 W1 N23 78.4(6) 

W2 W1 CI 101.3(6) W2 W1 C2 172.8(9) 

Nil W1 N12 39.5(6) Nil W1 N13 91.5(8) 

Nil W1 N21 171.9(6) Nil W1 N22 85.4(7) 

Nil W1 N23 82.6(7) Nil W1 CI 131.6(8) 

Nil W(l) C2 122.7(8) N12 W1 N13 63.5(1) 

N12 W1 N21 148.4(6) W1 Nil W2 82.6(6) 

W1 Nil N12 78(1) W2 Nil N12 63(1) 

W1 N12 W2 82.6(1) W1 N12 Nil 63(1) 

W2 N12 Nil 78(1) W1 N21 CI 79.9(1) 

W1 N22 C2 77.2(1) W1 CI N21 57.9(2) 

W1 CI C3 127.3(2) N21 CI C3 141.9(2) 

W1 C2 N22 60.5(1) W1 C2 C4 85.0(1) 

N22 C2 C4 141.9(1) CI C3 N25 142(3) 

C2 C4 N24 142(3) 
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The coordination sphere of the N1 atom (Nil) is shown in Figure 6. The Nil 

atom is tetrahedrally coordinated by three tungsten atoms (Wl, W2, and W3) and one 

nitrogen atom (N12) to form a distorted tetrahedron. 

Figure 7 shows the coordination sphere of the N2 atom (N21). The N21 atom is 

coordinated by three W atoms (Wl, W3, and W4) and one C atom (CI). Since the 

sum of the angles of W1-N21-W3, W1-N21-W4, and W3-N21-W4 is almost 360°, the 

coordination geometry of the N2 atom can be considered as a distorted triangular 

pyramid. Wl, W3, and W4 resides in the triangular basal plane, and CI occupies the 

apex position of the triangular pyramid. 

The coordination sphere of the C atom is irregular (Figure 8). It is coordinated 

by two W atoms (Wl, W4), one N atom (N21), and one C atom (C3). 

Although the structural refinement results are satisfactory, several weak 

intermolecular interactions were found in the structure which are much longer than 

normal bonding distances, but shorter than the van der Waals interactions. For 

instance, the bond distances of N12-N13 (2.20(4) A) and N23-C1 (1.89(4) A) (see 

Figure 5) are much shorter than the van der Waals distance (-3.20 A), but they are 

much longer than the normal N-N and C-N single bond distances (1.45 A and 1.47 A, 

respectively). 
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Figure 6. The coordination sphere of the NI atom (Nil) in W2N2(N2C2)- Selected 

bond distances (A) and bond angles (®) are as follows: Nll-Wl, 2.00(3); N11-W2, 

2.19(3); N11-W3, 1.97(3); N11-N12, 1.43(4); W1-N11-W2, 82.5(1); W1-N11-W3, 

145.4(2); W2-N11-W3, 116.5(1); N12-N11-W1, 76.6(2); N12-N11-W2, 62.4(1); N12-

N11-W3, 136(1). 
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Figure 7. The coordination spliere of the N2 atom (N21) in W2N2(N2C2). Selected 

bond distances (A) and bond angles (®) are as follows: N21-W1, 2.01(3); N21-W3, 

2.07(3); N21-W4, 2.06(2); N21-C1, 1.59(4); W1-N21-W3, 129.4(7); W1-N21-W4, 

133.3(7); W3-N21-W4,96.8(1); C1-N21-W1,79.8(1); C1-N21-W3,124.1(1); C1-N21-

W4, 77.1(1). 
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Figure 8. The coordination splicre of llie C atom (CI) in W2N2(N2C2). Selected 

bond distances (A) and bond angles (°) are as follows: Cl-WI, 2.33(4); C1-W4, 

2.31(3); C1-N21,1.59(4); C1-C3,1.52(5); W1-C1-C3,127.3(2); W1-C1-N21,57.8(6); 

W4-C1-C3,85.0(1); W4-C1-N21,60,5(1); W1-C1-W4,107.2(4); N2I-C1-C3,141.8(7). 
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X-ray photoelectron spectroscopy 

XPS was used to obtain W and N binding energies and provide further 

information about the possible oxidation states of tungsten. The W4f XPS spectra of 

W3N5, cubic WN, and the product mixture (hexagonal WN and W metal) from 

annealing W3N5 at 800 ®C are shown in Figure 9. Only one type of tungsten is 

necessary to fit the XPS spectra of W3N5 and cubic WN. The calibrated binding 

energies of ^^^12 ^3^5' 

for WN, respectively. Two types of tungsten are necessary to fit the spectrum of the 

product mixture (hexagonal WN and W metal) from annealing W3N5 at 800 °C. One 

type of W has calibrated binding energies of W4f-7^ and W4f5y2 at 31.3 and 33.4 eV, 

which are typical W4f binding energies for tungsten metal. The other type of W has 

calibrated binding energies of y^^f-j/2 and W4f5y2 at 32,3 and 34.4 eV, which can be 

assigned to the tungsten atoms in hexagonal WN. 

For comparison. Table 8 lists the binding energies of WO2, WNCI3, and WO3. 

It can be observed that the binding energies of W3N5 are higher than the binding 

energies of WO2; however, they are lower than the binding energies of WNCI3 and 

WO3, which indicates that the oxidation state of tungsten in W3N5 is evidently +5. 

The binding energies of cubic and hexagonal WN are lower than the binding energies 

of WO2, but higher than the binding energies of tungsten metal, indicating that the 
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Figure 9. W4f XPS spectra of (a) W3N5, (b) cubic WN, and (c) product mixture 

(hexagonal WN and W metal) from annealing W3N5 at 800 °C. 
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Table 8. W4f XPS binding energies (eV) of tungsten and related compounds 

Compound ^^^7/2 

Wa 31.4 33.5 

W03^ 35.5 37.6 

W02^ 32.5 

WNCI3 34.7 36.8 397.5 

W3N5 32.8 34.9 397.4 

WN^ 32.0 34.2 397.6 

WN^ 32.3 34.4 398.2 

W 31.3 33.4 

^ Reference 17 ^ Cubic WN. ^ Hexagonal WN. 

oxidation state of tungsten is +3. The N Is binding energies for all compounds are in 

the range 396.2-398.2 eV, which is characteristic of transition metal nitrides 

Electronic structure calculations 

Cubic phases of molybdenum and tungsten mononitrides with the rock salt 

structure were predicted to exhibit superconductivity.^"^ The qualitative correlation 
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arising between and the density of states (DOS) at the Fermi level, N(Ep), is given 

in equation A 

kT^ = 1.13 ha exp (-llN(Ep)V) (A) 

where is a measure of the electron-phonon interaction and co is a characteristic 

1 fi 
phonon frequency whose magnitude is similar to the Debye frequency. According 

to this expression, large values of either N(Efr) or V (or both) would lead to high T^. 

values. The electronic structure calculations on cubic MoN with the rock salt structure 

(a = 4.250 A) have shown a large value of the density of states at the Fermi level.^ 

Therefore, it would be interesting to know the electronic structure of the cubic WN 

with rock salt structure. 

The total DOS curve (Figure 10a) for cubic WN with rock salt structure (a = 

4.171 A) was obtained by sampling 465 uniformly distributed K points in the/cc 

Brillouin zone. The contribution of the tungsten 6s-6p bands is not included in this 

curve. The Fermi level falls in the manifold of the % bands which are the 

combinations of tungsten Sd^^y, 5d^, and nitrogen 2p interactions. The bands 

raised above the t2g bands are mainly the combinations of tungsten 5d^.y2, 5d^2^ 

nitrogen 2p interactions. The crystal orbital overlap population (COOP) for the W-N 

and W-W interactions are shown in Figures 11. In both cases, the and t2g bands 

show antibonding characteristic due to the interactions between the tungsten 5d and 

nitrogen 2p orbitals. The 2p bands, which are the combinations of the tungsten 5d and 
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Figure 10. The total DOS curve for (a) cubic WN (a = 4.178 A) and (b) cubic WC (a = 4.266 A) with NaCl 

structure. The Fermi levels noted by dashed lines are at -8.41 eV for cubic WN, and -8.50 eV for cubic WC. 
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Figure 11. The crystal orbital overlap population (COOP) for (a) the W-N and (b) the W-W interactions. 

The Fermi level at -8.41 eV is noted by dashed lines. 
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nitrogen 2p interactions, show a bonding character. The 2s bands, however, are mainly 

composed of nitrogen 2s orbitais, and show a bonding character as well. 

Clearly, the total DOS curve shows cubic WN to be an electrical conductor. By 

comparison to the total DOS curve (Figure 10b) for cubic WC with rock salt structure 

(a = 4.266 which was obtained by the same calculation method, it was found that 

the N(Ep) for the cubic WN was about 1.34 times higher than that for the cubic WC. 

According to equation A, the for the cubic WN may be estimated to be higher than 

lOK, which was the value of for cubic WC. 

Magnetic properties 

The molar magnetic susceptibilities of W3N5 and cubic WN as a function of 

temperature are shown in Figures 12 and 13. The susceptibility data in the range 100-

300 K were fit to a modified Curie-Weiss relationship, x = C/(T - 0) + where C, 

0, and Xo refer to the Curie constant, the Weiss temperature, and temperature 

independent susceptibility. The results of nonlinear fitting of the observed data are 

given in Table 9. 

A very small effective moment (0.13 BM) in the l(X)-300 K temperature range 

was observed for W3N5. Similarly, a very small effective moment (0.088 BM) in the 

100-300 K temperature range was observed for the cubic WN phase as well. Using 

the assumption that spin 1/2 ions are the sources of the Curie-Weiss behavior, the 
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Table 9. Parameters derived from the non-linear magnetic fitting results of observed 
magnetic data for W3N5 and cubic WN with NaCl structure 

Compound C(eniu-KAiioIe) 0(K) XQ(emii/mole) M(BM) 

W3N5 2.10 X 10-^ -10.9 -1.60 X 10-^ 0.13 

cubic WN 7.91 X 10-^ -56.3 -2.75 X 10*^ 0.088 

concentration of the paramagnetic carriers estimated from the corresponding Curie 

constant (C) was less than 0.1%, suggesting that the moments may be due to 

impurities. Therefore, both W3N5 and cubic WN are diamagnetic materials. 

The electronic structure calculations have indicated that the cubic WN with NaCl 

structure is a conductor, and might be a superconductor. However, the magnetic 

susceptibility measurements of this cubic WN did not show any evidence of 

superconductivity in the temperature range 6-300 K . 

Based on the XPS data of W3N5, the oxidation state of tungsten in this compound 

is +5. Therefore, each tungsten atom in this compound possesses one single electron. 

The diamagnetic behavior of W3N5 thus suggests that the electron are paired by W-W 

bond formation, and thus this material should be an insulator. 
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Figure 12. The molar magnetic susceptibility of W3N5 as a function of temperature, 

and reciprocal susceptibility vs. temperature (inset). 
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Figure 13. The molar magnetic susceptibility of cubic WN with NaCl structure as 

function of temperature, and reciprocal susceptibility vs. temperature (inset). 
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Conclusions 

This paper describes the preparation and characterization of new tungsten nitride 

and carbide nitride compounds. A bulk solid phase of tungsten nitride WgNg was 

prepared through a solid state reaction between WNQ3 and Zn3N2 in sealed Pyrex 

tubes at 400 °C. The XPS study indicated that the oxidation state of tungsten in this 

amorphous phase was +5. Therefore, each tungsten atom in this W3N5 compound 

possesses one single electron. The magnetic susceptibility measurements showed that 

W3N5 was diamagnetic in the temperature range 6-300 K. This result suggests that 

the single electron possessed by the tungsten atom in W3N5 is paired through W-W 

bond formation. 

Heating W3N5 at 600°C in sealed quartz tubes yielded a cubic tungsten 

mononitride phase (WN) with rock salt structure (a = 4.171 A). Heating W3N5 at 800 

°C in sealed quartz tubes produced hexagonal WN phase and tungsten metal. At the 

same time, a few golden crystals were also obtained, which were grown via a chemical 

vapor transport reaction. 

The golden W2N2(C2N2) compound crystallizes in the monoclinic space group 

I2la (#15, nonstandard setting) with crystallographic data, a = 5.6521(9) k, b = 

4.889(1) A, c = 9.576(1) A, p = 90.20(1)°, V = 264.6(1) A^. The structure of 

consists of W2 dimers, hydrazido ligands N2'^, and 1,4-diazabutenido 

ligands represented by three resonance structures, [N-C=C-N]^", [N=C-C-N]^", and [N-
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C-C=N]^'. The dimers are linked together by N-N and N-C-C-N groups to form a 3-

dimensional network. The metal to hydrazido nitrogen bond distances fall in the range 

1.97(4) to 2.19(4) A, and the metal-diazabutenido nitrogen distances show a more 

limited range from 2.01(4) to 2.07(3) A. The hydrazido N-N bond distance is 1.43(5) 

A, and the diazabutenido C-C bond distance is 1.59(4) A and N-C bond distance 

1.56(4) A. The W-W single bond distance is 2.767(2) A. 

The electronic structure calculations indicated the cubic WN was a conductor and 

might exhibit superconductivity. However, the magnetic susceptibility measurements 

indicated that the cubic WN exhibited a weak diamagnetic behavior in the temperature 

range 30-300 K, but did not show any evidence of superconductivity. Moreover, the 

magnetic susceptibility measurements suggest that W3N5 should be an insulator. 
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CHAPTER 4. SYNTHESIS AND CHARACTERIZATION 
OF LnMo80i4 CONTAINING Mog BICAPPED 

OCTAHEDRA (Ln = La, Ce, Pr, Nd, Sm) 

A paper to be submitted to Inorganic Chemistry 

23iihong Zhang and Robert E. McCarley 

Abstract 

A systematic investigation in the Ln203-Mo03-Mo (Ln = La, Ce, Pr, Nd, Sm) 

system has been explored in sealed, evacuated quartz tubes at 1250®C. A new reduced 

ternary rare-earth molybdenum oxide LaMogOi4 with a novel crystal structure has 

been discovered. This compound crystallized in the orthorhombic space group Pbcn 

(#60) with crystallographic data: a = 9.197(2) k,b = 11.128(2) A, c = 20.006(4) A, 

and V = 2048(1) A^, Z-%,R- 0.035, and Rw - 0.045. The novel structure contains 

a 1:1 ratio of cis- to trans-Mog bicapped octahedra, which are arranged alternately 

along the c-axis of the unit cell. The Mo-Mo bond distances are in the range of 

2.590(4) to 2.888(6) A. The average Mo-Mo bond distance in trans-isomer is 2.703 

A, which is shorter than that found in the cis-isomer (2.748 A). The Mo-O bond 

distances are in the range of 1.94(3) to 2.18(2) A. The M-0 bond strength calculations 

suggest that the cis- and trans-Mog clusters in LaMogO|4 contain 22 and 24 electrons. 
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respectively. Under these synthetic conditions, the phases containing all cis-Mog 

bicapped clusters and a 1:1 ratio of cis-Mog to trans-Mog bicapped clusters were 

found. It is noted that the sizes of the rare-earth cations are critical for the formation 

of the various phase types. The larger cations (La, Ce, and Pr) aid in the formation 

of trans-Mog octahedra, and the smaller cations (Nd and Sm) only stabilize the cis-

Mog octahedra. A rational explanation for this result arises from the observation that 

the effective volume of cis-Mog cluster is 3/4th the value of the trans-Mog cluster. 

The magnetic susceptibility measurements indicate that no effective moment 

contribution arises from the metal clusters Mog, even though the cis-Mog cluster in 

LnMogOj4 containing all cis-Mog octahedra apparently contains an odd number of 

electrons (23 e"). The electrical resistivity measurements and electronic structure 

calculations indicate that the LnMogO|4 containing all cis-Mog clusters are metallic 

compounds, and the LnMogO^^ containing a 1:1 ratio of cis- to trans-Mog clusters are 

semiconducting compounds. 

Introduction 

Since the discovery of reduced molybdenum oxide, NaMo40g,^ containing trans-

edge-shared Mog octahedra, ternary reduced molybdenum oxides have been studied 

extensively. A variety of structure types with this basic building mode have been 
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discovered.^ 

Over the past several years, ternary reduced rare-earth molybdenum oxides have 

caused great interest, because these compounds may possess interesting electrical and 

magnetic properties. Many compounds have been discovered in this research area by 

using either high-temperature solid stale reactions or electrolysis, and most of them 

have been structurally characterized.^"^ One interesting family of reduced rare-earth 

molybdenum oxides is that of compounds containing Mog bicapped octahedra. The 

Mog bicapped octahedra could have three structural isomers (cis-, meta-, and trans-), 

which are shown in Figure 1. This possibility of including the different isomers may 

lead to an interesting crystal structure chemistry, because different combinations and 

ratios of these isomers can occur within the same crystal structure. 

McU' Trans-

Figure 1. The three structural isomers of Mog bicapped octahedra. 
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The first compound containing Mog bicapped octahedra was synthesized by 

electrolysis in 1990.^® It has a non-stoichiometric formula LaMo-y and contains 

cis-Mog bicapped octahedra, in which the face capping positions are only 85% 

occupied by Mo atoms. Subsequendy, a stoichiometric compound, NdMogOj4,^ ^ was 

discovered, in which the face capping positions are fully occupied. These compounds 

exhibit paramagentic behavior in the temperature range of lOO-SOOK, and metallic 

character at room temperature.^^' More recently, compounds CeMogOj4^'* and 

PrMogOi4,^^ which contain 1:1 and 2:1 ratios of cis- to trans Mog bicapped octahedral 

clusters, respectively, have been discovered by P. Gougeon and coworkers by 

performing reactions at extremely high temperatures. 

In order to better understand these ternary reduced rare-earth molybdenum 

compounds containing Mog bicapped octahedra, a systematic study has been explored 

in the Ln203-Mo03-Mo system (Ln = rare-earth). The lanthanum and praseodymium 

analogues of CeMogOj4 containing a 1:1 ratio of cis- to trans-Mog cluster were 

discovered at relatively low temperature, and the samarium analogue of NdMogOj4 

containing all cis-Mog cluster was found as well. Electronic structure calculations 

were carried out on the compound NdMogOj4 containing all cis-Mog clusters. The 

electrical resistivity and magnetic susceptibility were measured on some of these 

compounds. This paper will present the synthesis, structure, and properties of 

compounds LnMogOi4 (Ln = La, Ce, Pr, Nd, Sm). 
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Experimental 

Materials 

The starting reagents included Ln203 (Ln = La, Pr, Nd, Sm, and Gd), Ce02, 

M0O3 and Mo powder. Ln203 and Ce02 were fired at 9(X)°C for 12 hrs to transform 

any Ln2(C03)3 impurities to the oxides before use. The Mo powder was reduced with 

flowing H2 at 8(X)°C for 6 hrs to remove any surface oxides. M0O3 was heated in air 

at 400°C for 4 hours before using. All materials were stored in a desiccator. 

Physical Measurements 

X-ray powder diffraction 

X-ray powder diffraction data were obtained from a Phillips ADP3520 0-20 X-ray 

powder diffractometer using Cu Ka^ radiation (k = 1.54056 A) at 40 kV and 30 mW. 

The samples were mounted by pressing the powders into a recessed square in a zero-

angle quartz plate (obtained from Gem Dugout). 

Magnetic susceptibility 

Magnetic susceptibilities were measured with a Quantum Design SQUID 

magnetosusceptometer. The samples were loaded into a 3 mm inner diameter quartz 
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tube that had been sealed on the bottom half with a 3 mm outer diameter quartz rod. 

A 3 mm outer diameter quartz rod was also placed in the top half of the loaded sample 

tube which was then mounted in an apparatus that allowed evacuation of the sample 

tube and purging with helium gas. After the system was pumped and purged with 

helium three times, the upper quartz rod was moved close to the sample under a partial 

pressure of helium (to facilitate temperature equilibration during measurements). The 

sample was thus sandwiched between two quartz rods. The tube then was sealed off. 

This procedure was used to eliminate O2 contamination, which has an 

antiferromagnetic transition at ~50 K. The experimental data were corrected for the 

diamagnetic contribution from the quartz. Measurements on empty quartz tube/rod 

assemblies, with varying gap sizes, indicated that the diamagnetic contribution from 

the quartz was related to the size of the gap. Since the signal vs. gap size could be 

fit by a line, the correction was simply employed by measuring the length of the gap 

containing the sample. 

Electrical resistivity 

Electrical resistivity measurements were carried out on a single crystal of 

LaMogOj4 (1.2 X 1.0 x 0.8 mm^) and a pressed pellet of SmMogOj4 that had been 

sintered in an evacuated fused silica ampoule at 1250°C for 48 h. The measurement 

was based on the van der Pauw four probe method for electrical conductivity. The 
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basic method employs passage of a constant current through one lead of the sample, 

while concurrently measuring the potential drop across the other lead at a given 

temperature. Platinum wire leads were used and attached to the sample via Epo-Tech 

silver epoxy resin. 

Synthetic Procedures 

The synthesis of the reduced molybdenum oxides required that the oxygen content 

be controlled stoichiometrically. Therefore, the reactions were usually carried out in 

sealed, evacuated silica (~1.0 x 10'^ torr) vessels. 

In a general procedure, stoichiometric amounts of the starting materials (25M0O3 

+ 23Mo + 3Ln203; Ln = La, Pr, Nd, Sm, and Gd; or 4M0O3 + 4Mo + Ce02) were 

mixed and thoroughly ground. The mixtures were then loaded into fused silica tubes. 

The tubes were sealed under dynamic vacuum (-1.0 x 10' torr). A typical reaction 

mixture contained 5.667 mmol of M0O3, 5.212 nmiol of Mo, and 0.068 mmol of 

LniOs, or 5.112 mmol of M0O3, 5.212 mmol of Mo, and 1.303 mmol of Ce02- The 

reactions were fired at 1250°C for 2 days in a box furnace. Black, powdery products 

were usually obtained. 

Single crystals were obtained by annealing mixtures of the black powdery 

products and BaQ2 (~10%, used as a flux) in a evacuated (-1.0 x 10"^ torr) quartz 

tube at 1250°C for 5-7 days. Black chunk-like single crystals were usually obtained. 
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Electronic Structure Calculations 

All electronic calculations were of the extended Huckel tight-binding type^^. The 

observed lattice parameters of NdMogOj4 and atomic positions were taken from the 

reported data.^^ Atomic orbital parameters for all atoms, listed in Table 1, and charge 

17 iteration parameters for Mo and O were taken from standard sources. DOS curves 

were evaluated using 8 k-point sets. 

Table 1. Atomic Parameters Used in the Extended Huckel Calculations. 

atom orbital ^/ij(eV) ^2 ^2 

Mo 5s -8.77 1.96 
5p -5.60 1.90 
4d -11.06 4.54 0.5899 1.90 0.5899 

0 2s -32.30 2.28 
2p -14.80 2.28 

X-ray Structure Determination 

A suitable black crystal with dimensions of 0.10 x 0.10 x 0.06 mm^ was selected 

from the reaction product of 1^03, Mo, and M0O3. The crystal was then encased in 

epoxy resin, and attached to the tip of a glass fiber. All measurements were made on 

a Rigaku AFC6R diffractometer using graphite monochromated Mo Ka (A, = 0.71069 

A) radiation and a 12 KW rotating anode generator. 
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Cell constants and an orientation matrix for data collection, obtained from a least-

squares refinement using the setting angles of 25 carefully centered reflections in the 

range 4.0 < 20 < 35.0, corresponded to an orthorhombic cell with dimensions: a = 

9.197(2) A, b = 11.128(2) A, c = 20.006(4) A, and V = 2048(1) A^. Data were 

collected at room temperature over the range 4° < 20 < 60° in the hemisphere (±/i, +/fc, 

±0 using the 0) - 20 scan technique. Three standard reflections were monitored every 

150 reflections and showed no intensity variation over the collection period. A total 

of 5372 reflections were collected, of which 2737 were unique = 0.086) and 1029 

of which were observed with / > 3.00a(/). No Decay correction was applied. First, 

an empirical absorption correction using the \|f scan technique was applied after the 

structure solution. After all of the atoms were located and refined isotropically, the 

\\f scan absorption correction was removed, and an empirical absorption correction 

_ 1 fio 
using the DIFABS program was applied which resulted in transmission factors 

ranging from 0.94 to 1.08. The data were corrected for Lorentz and polarization 

effects. 

The orthorhombic space group was Pbcn (#60) was chosen on the basis of 

systematic absences and intensity statistics. The structure was solved by the SHELXS 

direct methods^^'' which yielded the positions of the lanthanum and molybdenum and 

chlorine atoms. Successive Fourier electron difference maps yielded the positions of 

the oxygen atoms. The structure was then refined by full-matrix least-squares methods 
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with anisotropic thermal parameters on ail La atoms and seven of the eight unique Mo 

atoms, and isotropic thermal parameters on the remaining one Mo atom and all oxygen 

atoms. The final cycle of full-matrix least-squares refinement was based on 1029 

observed reflections and 136 variable parameters and converged with unweighted and 

weighted agreement factors of R = 0,035 and Rw = 0.045, respectively. The 

asymmetric unit was found to be LaMogO|4. All calculations were performed using 

the TEXSAN^^^ crystallogr^hic software package of Molecular Structure Corporation. 

The crystallographic data and refinement results are given in Table 2, and the atomic 

coordinates and equivalent isotropic thermal parameters of non-hydrogen atoms are 

given in Table 3. The anisotropic thermal parameters are listed in Table 4. 

Results and Discussion 

Synthesis of LnMogOj4 

Most known reduced rare-earth molybdenum oxide compounds containing 

bicapped Mog clusters were prepared at extremely high temperature (>1800°C). The 

compound LaMo^ 7OJ4 was made at 1080°C using an electrolysis method. However, 

die starting materials were not in stoichiometric ratio, and the method could not 

produce a pure powder product. In this work, aU compounds LnMogOj4 were 

prepared at relatively low temperature (1250°C). All of the black powder products 
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Table 2. Crystallographic data for LaMogOj4 

Empirical Formula 

Formula Weight 

Crystal Color, Habit 

Crystal Size (mm) 

Crystal System 

Space Group 

Lattice Parameters 

Z Value 

Density(calc.) 

^000 
Diffractometer 

Radiation 

Temperature 

26 range 

No. of Reflections Measured 

No. of Unique Reflections 

No. of Observations (I>3.(X)a(I)) 

No. of Variables 

Reflection/Parameter Ratio 

Residuals: R; Rw^ 

Goodness-of-Fit 

Maximum Peak in Final Diff. Map 

Minimum Peak in Final Diff. Map 

L-ia^^OoOi^ 

1130.42 

black, chunk 

0.10 X 0.10 X 0.06 

orthorhombic 

Pbcn (#60) 

a= 9.197(2) A 
b = 11.128(2) A 
c = 20.006(4) A 
V = 2048(1) A 
8 
7.333 g/cm^ 

4040 

Rigaku AFC6R 

MoKa (X = 0.71069 A) 
23°C 

4-60° 

5372 

2737 (Rint = 0.086) 

1029 

136 

7.57 

0.035; 0.045 

1.46 

3.83 eVA^ 

-2.50 eVA^ 

^R = I| lFo|- |Fc| l/I |Fo|; Rw = [( I w (iFoj - lFc|)2 / S w Fo^ )]l^. 
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Table 3. Atomic coordinates and equivalent isotropic thermal parameters (A^) of the 
atoms for LaMogOi4. 

atom X y z B(eq)^ 

Lad) 0 0.9794(2) 1/4 0.6(1) 

La(2) 0 1/2 1/2 0.5(1) 

Mo(l) 0.1211(3) 0.7737(2) 0.4204(1) 0.15(8) 

Mo(2) 0.1208(3) 0.2703(2) 0.1675(1) 0.24(7) 

Mo(3) 0.1196(6) 0.0120(2) 0.4209(2) 0.37(8) 

Mo(4) 0.1211(5) 0.6284(2) 0.2875(2) 0.3(1) 

Mo(5) 0.3801(5) 0.6235(2) 0.5435(2) 0.2(1) 

Mo(6) -0.3746(5) 0.8832(2) 0.2065(2) 0.3(1) 

Mo(7) 0.1223(5) 0.8752(2) 0.5369(2) 0.2(1) 

Mo(8) -0.3776(5) 0.0032(1) 0.3304(2) 0.12(5) 

0(1) 0 0.756(2) 1/4 0.8(4) 

0(2) 1/2 0.737(2) 1/4 0.7(4) 

0(3) -0.230(4) 0.010(1) 0.173(2) 1.0(4) 

0(4) 0.260(3) 0.004(1) 0.082(1) 0.1(3) 

0(5) 0.008(2) 0.741(1) -0.0012(7) 0.4(3) 

0(6) -0.237(3) 0.887(2) 0.286(1) 0.6(3) 

0(7) -0.270(3) 0.891(2) 0.040(1) 0.5(3) 

0(8) -0.489(2) 0.888(1) 0.118(1) 0.3(3) 

0(9) -0.006(2) 0.896(1) 0.369(1) 0.5(3) 

0(10) -0.258(2) 0.755(1) 0.413(1) 0.4(3) 

0(11) -0.262(2) 0.134(1) 0.039(1) 0.3(3) 

0(12) 0.244(3) 0.130(2) 0.213(1) 1.0(4) 

0(13) -0.241(2) 0.764(1) 0.165(2) 0.9(4) 

0(14) 0.009(3) 0.134(2) 0.125(1) 1.0(3) 

0(15) 0.012(2) 0.634(1) 0.375(1) 0.2(2) 

^ Bgq = 8/37c2(Uii(aa*)2 + U22(bb*)^ + U33(cc*)^ + 2Ui2aa*bb*cosY + 

2U|3aa*cc*cosP + 2U23bb*cc*cosa) 
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Table 4. Anisotropic thermal parameters (A^) of the atoms for LaMogOi4^''' 

atom Ull U22 U33 U12 U13 U23 

La(l) 0.007(1) 0.0053(7) 0.011(2) 0 -0.001(1) 0 

La(2) 0.004(1) 0.0088(8) 0.006(1) 0.0005(7) 0.000(1) -0.0017(6) 

Mo(l) 0.003(1) 0.0016(9) 0.002(1) 0.0000(9) -0.0001(9) 0.0000(7) 

Mo(2) 0.0039(9) 0.0027(7) 0.002(1) -0.0001(8) -0.0006(8) 0.0003(6) 

Mo(3) 0.004(1) 0.0068(8) 0.003(1) -0.0008(9) 0.0000(8) 0.0003(8) 

Mo(4) 0.005(2) 0.0030(9) 0.002(1) -0.001(1) 0.001(1) -0.0004(7) 

Mo(5) 0.002(2) 0.0030(9) 0.004(1) 0.002(1) -0.000(1) 0.0003(7) 

Mo(6) 0.005(2) 0.0019(8) 0.002(1) -0.0013(9) 0.001(1) -0.0006(8) 

Mo(7) 0.001(2) 0.0029(9) 0.004(1) -0.0001(9) -0.002(1) 0.0008(7) 

Mo(8) 0.0016(6) 

0(1) 0.010(5) 

0(2) 0.009(5) 

0(3) 0.012(5) 

0(4) 0.001(4) 

0(5) 0.005(4) 

0(6) 0.008(4) 

0(7) 0.007(4) 

0(8) 0.004(3) 

0(9) 0.006(3) 

0(10) 0.005(4) 

0(11) 0.004(4) 

0(12) 0.013(5) 

0(13) 0.011(5) 

0(14) 0.013(4) 

0(15) 0.002(3) 

^The coefficients Uy of the anisotropic temperature factor expression are defined as 

exp(-27C^(a*%iih^ + b*^U22k^ + c^^Uggl^ + 2a*b*Ui2hk + 2a*c*U^3hl +2b*c*U23kl)) 

''Thermal parameters for Mo(8) and all oxygen atoms only refined isotropicaily. 
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were examined by X-ray powder diffraction. The results indicated that pure phases 

were obtained. Under these synthetic conditions, the phases containing all cis-Mog 

clusters and 1:1 ratio of cis-Mog to trans-Mog were found (see Table 5). However, 

the phase containing 2:1 ratio of cis-Mog to trans-Mog has not been found under these 

synthetic conditions. The PrMog024 compound containing 2:1 ratio of cis-Mog to 

trans-Mog was discovered at extremely high temperature (2(XX)K),^^ 

Cation effects 

This work confirms that the sizes of the rare-earth cations are critical for the 

formation of the various phase types. Larger cations (La, Ce, and Pr) aid in the 

formation of trans-Mog bicapped octahedra, and smaller cations (Nd and Sm) stabilize 

only the cis-Mog bicapped octahedra. This is concluded from the finding that 

LaMogOj4, CeMogOj4, and PrMogOj4 contain a 1:1 ratio of cis-Mog to trans-Mog 

octahedra, and NdMog0^4 and SmMogOi4 contain only cis-Mog octahedra. For the 

rare-earth cations smaller than Sm, no compounds containing Mog bicapped octahedra 

were found. If one considers the effective volume occupied by the Mog bicapped 

octahedral cluster, one can show that the effective volume of cis-Mog cluster is only 

about 3/4 of that of the trans-Mog cluster (see Figure 2). Therefore, the formation of 

trans-Mog octahedra requires more space, and it can be argued that the larger cations 

satisfy this requirement by opening up the intercluster space. 
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Table 5. Compounds prepared in the LnMogOj4 system at 1250°C 

Compound Cluster Type Ratio Characterization Cell Parameters 

LaMoOj4 

CeMogOj^ 

cis-, trans-

cis-, trans-

1:1 

1:1 

X-ray single crystal 

X-ray powder 

a = 9.197(2) A 
b = 11.128(2) A 
c = 20.006(4) A 

PrMogOj4 
NdMogOj4 

SmMogOj4 

"EuM080j4" 

cis-, trans-
cis-

cis-

no bicapped-Mog 

1:1 X-ray powder 
X-ray single crystal 

X-ray single crystal 

X-ray powder 

a = 9.197(2) A 
b = 9.996(2) A 
c = 11.128(4) A 
a = 9.191(6) A 
b = 9.998(3) A 
c = 11.139(6) A 

"GdMogOi4" no bicapped-Mog X-ray powder 

"DyMogOn" no bicapped-Mog X-ray powder 
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Figure 2. Illustration showing tlie effective volume differences between the cis-

(upper) and trans- (lower) Mog cluster units. By comparison, it is seen that the 

effective volume of the cis-Mog cluster is 3/4th the value of the trans-Mog cluster. 
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X-ray powder diffraction 

Figure 3 and 4 illustrate the observed X-ray powder diffraction patterns for 

SmMo80i4 (cis-Mog) and LaMogO j4 (cis-Mo : trans-Mog = 1:1), respectively. Their 

observed versus calculated d-spacings and relative intensities are given in Tables 6, 

and 7. The X-ray powder patterns of LnMogO|4 phases are quite similar to each 

other. The differences of their powder patterns are that there is no reflection found in 

the 20 range of 20-22° for LnMogOj^ containing all cis-Mog, however, a medium 

strong reflection is found at 20 21.36® in the patterns of LnMogO|4 containing a 1:1 

ratio of cis-Mog to trans-Mog. On the other hand, there is no reflection found in the 

20 range of 58-60° for LnMogO^^ containing 1:1 ratio of cis-Mog to trans-Mog, but 

a medium reflection is found at 20 59.44° in the patterns of LnMogO|4 containing all 

cis-Mog. Although a reflection at 20 22.71° is found in both types of pattern, the 

relative intensities of this reflection for LnMogOj4 containing all cis-Mog is 12 times 

stronger than that for LnMogO|4 containing a 1:1 ratio of cis-Mog to trans-Mog. 

Those differences help one to distinguish the two phases by X-ray powder diffraction. 

Since the phase of LnMogO|4 containing 2:1 ratio of cis-Mog to trans-Mog was 

not observed in our synthetic conditions, the observed powder pattern was not 

obtained. However, the calculated pattern and d-spacings were obtained based on the 

published compound PrMogOi4 which was prepared at 2000 The calculated 

XRD powder pattern of PrMogO|4 containing 2:1 ratio of cis- to trans-Mog cluster has 
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Figure 3. X-ray powder diffraction pattern of SmMogOj^, 
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Figure 4. X-ray powder diffraction pattern of LaMogOj^. 
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Table 6. X-ray powder diffraction data for LnMogOi4 (Ln = Nd, Sm) containing cis-
Mog bicapped octahedra 

^Nd ^Sm 

h kl cai. obv. obv. 20 (cal.) I (cal.) 

1 1 1 5.786 5.793 5.782 15.30 73.7 
0 0 2  5.585 5.600 5.586 15.85 23.6 
0 20 4.992 5.006 4.981 17.75 14.8 
2 0 0  4.598 4.600 4.586 19.29 9.5 
2 1 1 3.912 3.916 3.909 22.71 49.1 
0 2 2 3.722 3.723 3.709 23.89 9.5 
2 0 2  3.550 3.543 3.550 25.06 7.4 
2 2 0  3.382 3.409 3.387 26.33 4.7 
1 1 3 3.262 3.249 3.226 27.32 60.1 
1 3 1 3.014 3.010 2.994 29.62 83.6 
2 2 2  2.893 2.892 2.885 30.88 5.3 
3 1 1 2.834 2.833 2.830 31.54 100.0 
2 1 3 2.779 2.771 2.767 32.18 60.4 
2 3 1 2.621 2.617 2.619 34.18 38.7 
0 4 0  2.496 2.498 2.487 35.95 6.2 
0 2 4  2.437 2.429 2.430 36.85 19.9 
1 40 2.409 2.407 2.398 37.29 26.8 
1 3 3 2.396 2.391 2.387 37.51 24.1 
2 0 4  2.387 37.65 3.4 
1 24 2.356 2.349 2.350 38.17 50.2 
4 0 0  2.299 2.297 2.289 39.15 17.2 
3 3 1 2.210 2.210 2.206 40.79 5.5 
2 4 0  2.194 2.185 41.11 13.5 
23 3 2.184 2.180 2.178 41.31 21.8 
2 2 4  2.153 2.147 2.142 41.92 22.0 
1 1 5 2.121 2.111 2.116 42.58 10.5 
2 4 2  2.042 2.043 44.32 3.4 
2 1 5 1.970 1.964 1.960 46.03 48.7 
4 2 2 1.956 46.38 3.1 
3 40 1.936 1.936 1.931 46.90 43.7 
3 3 3 1.929 1.921 47.08 7.7 
1 5 1 1.922 1.923 1.918 47.24 15.3 
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Table 6. (continued) 

^Nd ^Sm 

h k 1 cal. obv. obv. 20 (cal.) I (cal.) 

3 24 1.908 1.905 1.898 47.63 82.6 
0 0 6  1.862 1.856 48.88 3.5 
1 3 5 1.818 1.816 1.814 50.12 30.1 
25 1 1.808 1.809 1.803 50.44 35.3 
5 1 1 1.786 1.786 1.784 51.11 39.6 
3 1 5 1.777 1.776 1.774 51.38 7.7 
4 0 4  1.775 51.44 2.3 
1 5 3  1.728 1.726 52.93 4.9 
2 4 4  1.725 53.04 2.8 
23 5 1.720 1.716 1.717 53.20 22.8 
4 4 0  1.691 1.692 1.689 54.19 25.7 
4 2 4  1.672 1.671 1.668 54.85 40.1 
25 3 1.644 1.644 1.640 55.89 5.8 
2 2 6  1.631 56.36 2.4 
44 2 1.618 1.620 1.615 56.84 4.1 
5 3 1 1.593 1.594 1.590 57.82 3.0 
1 1 7 1.553 1.548 1.550 59.46 6.6 
3 5 3 1.526 1.526 1.521 60.62 7.4 
26 2 1.507 61.49 2.0 
6 1 1 1.501 1.502 1.498 61.74 3.2 
5 4 0  1.481 1.482 1.479 62.69 14.5 
5 3 3  1.478 1.479 62.84 4.5 
1 5 5 1.470 63.21 4.2 
5 2 4  1.468 1.468 1.466 63.29 28.2 
4 4 4  1.446 64.35 3.2 
0 6 4  1.430 1.430 1.427 65.20 53.1 
25 5 1.416 1.416 65.88 5.0 
5 1 5 1.406 66.45 4.8 
6 1 3 1.403 1.404 1.402 66.58 6.5 
3 1 7 1.401 66.68 2.1 
1 7 1 1.398 1.400 66.84 5.2 
0 0 8  1.396 1.397 1.395 66.96 18.3 
4 2 6  1.390 1.388 67.32 3.1 
63 1 1.381 1.382 1.379 67.77 6.9 
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Table 6. (continued) 

^Nd ^Sm 

h k 1 cal. obv. obv. 29 (cal.) I (cal.) 

2 6 4  1.365 1.366 68.70 2.1 
27 1 1.352 1.350 1.348 69.44 9.2 
3 5 5 1.339 1.339 1.334 70.22 10.5 
1 73 1.318 71.51 2.9 
6 4 0  1.306 72.27 3.6 
6 3 3  1.304 1.304 1.302 72.41 5.2 
3 3 7 1.302 72.50 5.4 
6 24 1.297 1.298 1.296 72.83 6.1 
5 5 3 1.272 1.272 1.270 74.57 6.7 
6 1 5 1.254 1.254 1.252 75.80 11.7 
0 6 6  1.241 1.239 1.238 76.75 3.2 
1 8 0 1.237 1.235 77.04 5.5 
1 5 7 1.235 77.14 2.2 
7 1 3 1.229 1.224 77.59 4.3 
3 7 3 1.222 78.17 7.6 
1 1 9 1.221 1.220 1.218 78.24 12.0 
0 4 8  1.219 1.218 1.216 78.40 6.7 
7 3 1 1.215 78.71 6.6 
46 4 1.214 1.215 1.212 78.76 20.8 
65 1 1.209 1.210 1.208 79.17 10.1 
1 4 8  1.208 1.207 1.205 79.22 8.9 
25 7 1.203 1.203 79.61 3.7 
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Table 7. X-ray powder diffraction data for LnMogOj4 (Ln = La, Ce, Pr) containing 
a 1:1 ratio of cis- and trans-Mog bicapped octahedra 

h k 1 

^La ^Ce dpr 

20 (cal.) I (cal.) h k 1 cal. obv. obv. obv. 20 (cal.) I (cal.) 

1 1 2 5.784 5.840 5.835 5.820 15.31 62.8 
0 2 0 5.564 5.577 5.590 5.583 15.91 13.0 
0 2 1 5.360 5.364 16.52 3.7 
0 0 4 5.002 5.006 5.026 5.021 17.72 15.0 
1 1 3 4.857 4.867 18.25 7.3 
2 0 0 4.598 4.601 4.611 4.617 19.29 10.8 
2 1 1 4.157 4.154 4.116 4.092 21.36 32.8 
2 1 2 3.912 3.917 3.924 3.929 22.71 3.9 
0 2 4 3.720 3.725 3.723 3.729 23.90 8.2 
2 1 3 3.584 3.588 3.572 3.570 24.82 10.3 
2 2 0 3.544 3.546 3.543 3.540 25.10 6.1 
1 1 5 3.485 3.487 3.472 3.468 25.54 17.3 
1 3 1 3.390 3.398 26.26 2.4 
2 0 4 3.385 3.392 3.379 3.376 26.30 4.8 
1 3 2 3.253 3.254 3.253 3.259 27.39 65.2 
1 3 3 3.057 3.059 29.18 9.3 
1 1 6 3.017 3.025 3.021 3.021 29.58 69.0 
2 2 4 2.892 2.904 2.893 2.895 30.89 6.0 
2 3 1 2.857 2.860 31.28 18.8 
3 1 2 2.834 2.844 2.840 2.840 31.54 100.0 
2 3 2 2.774 2.780 2.775 2.777 32.24 40.6 
3 1 3 2.702 2.699 2.696 33.12 2.8 
1 1 7 2.651 2.660 33.78 6.5 
2 3 3 2.650 33.80 8.1 
2 1 6 2.623 2.630 2.626 2.626 34.15 38.1 
1 3 5 2.608 34.35 3.3 
0 4 3 2.568 2.574 34.91 4.3 
0 0 8 2.501 2.507 2.505 2.503 35.88 7.3 
0 4 4 2.431 2.436 2.432 2.432 36.94 10.5 
1 0 8 2.413 2.418 2.414 2.414 37.23 26.6 
1 3 6 2.394 2.399 2.394 2.396 37.53 22.7 
2 4 0 2.380 37.76 2.3 
3 1 5 2.377 37.81 3.5 
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Table 7. (continued) 

^La ^Ce dpr 

h k I cal. obv. obv. obv. 29 (cal.) I (cal.) 

1 4 4 2.350 2.355 2.351 2.352 38.26 52.2 
4 0 0 2.299 2.304 2.302 2.303 39.15 18.5 
2 0 8 2.197 2.202 2.198 2.197 41.05 13.4 
2 3 6 2.183 2.187 2.184 2.184 41.33 29.8 
2 4 4 2.149 2.154 2.150 2.151 42.00 25.2 
1 5 2 2.114 2.119 2.115 2.116 42.73 11.7 
3 1 7 2.054 2.058 44.04 2.2 
2 2 8 2.043 2.040 2.044 2.041 44.29 4.0 
3 3 5 2.035 2.033 44.49 3.6 
2 3 7 2.031 2.029 44.57 2.5 
2 5 2 1.964 1.968 1.964 1.965 46.17 47.4 
4 2 4 1.956 46.39 2.8 
3 0 8 1.938 1.942 1.938 1.939 46-84 46.2 
1 1 10 1.925 1.928 1.925 1.926 47.16 17.2 
3 4 4 1.905 1.909 1.906 1.906 47.70 84.0 
1 3 9 1.867 48.73 3.1 
1 5 6 1.815 1.819 1.816 1.815 50.23 29.3 
2 1 10 1.810 1.814 1.812 1.810 50.37 31.1 
5 1 2 1.786 1.792 1.788 1.788 51.11 40.4 
4 4 1 1.765 1.770 1.771 1.772 51.74 2.3 
2 3 9 1.761 51.86 4.4 
2 5 6 1.717 1.720 1.718 1.718 53.30 19.5 
4 0 8 1.693 1.697 1.694 1.694 54.14 30.3 
4 4 4 1.670 1.672 1.672 1.671 54.91 44.4 
5 1 5 1.653 55.56 2.5 
4 2 8 1.619 1.622 1.623 56.80 2.4 
2 3 11 1.539 60.07 2.7 
3 3 10 1.527 1.529 1.528 1.528 60.59 10.3 
5 3 5 1.524 1.525 1.523 60.73 2.1 
5 0 8 1.482 1.485 1.482 1.483 62.64 14.8 
5 4 4 1.467 1.470 1.467 1.468 63.35 28.1 
2 1 13 1.447 1.447 64.32 2.8 
4 4 8 1.446 64.37 2.7 
0 4 12 1.430 1.432 1.429 1.430 65.18 57.6 
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Table 7. (continued) 

dLa ^Ce ^Pr 

h k I cal. obv. obv. obv. 20 (cal.) I (cal.) 

2 5 10 1.416 1.417 1.416 65.93 2.0 
6 3 1 1.413 1.413 66.06 2.1 
6 3 2 1.403 1.404 1.404 66.62 4.1 
1 1 14 1.401 1.402 66.71 3.7 
3 7 2 1.397 1.399 1.397 66.90 6.7 
0 8 0 1.391 1.393 1.390 1.391 67.25 21.0 
6 1 6 1.382 1.389 1.384 1.383 67.75 6.2 
2 7 6 1.370 1.371 1.369 1.370 68.43 5.7 
2 1 14 1.354 1.357 1.355 1.355 69.31 6.9 
3 5 10 1.338 1.341 1.339 1.339 70.26 10.9 
6 0 8 1.307 1.306 1.306 1.305 72.23 3.9 
6 3 6 1.304 1.302 72.42 6.9 
6 4 4 1.297 1.299 1.298 1.296 72.89 7.1 
5 3 10 1.272 1.274 1.272 1.270 74.54 8.9 
6 5 2 1.252 1.255 1.254 1.253 75.90 11.4 
1 0 16 1.239 1.241 1.240 1.239 76.87 6.5 
1 7 10 1.233 1.230 1.230 77.29 5.1 
3 3 14 1.223 1.226 1.223 1.223 78.08 9.4 
1 9 2 1.216 1.216 1.216 1.215 78.58 3.4 
4 4 12 1.214 1.213 1.211 1.212 78.73 15.9 
6 1 10 1.210 1.209 1.208 79.11 8.6 
1 8 8 1.205 1.203 1.202 1.205 79.46 7.4 
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shown that two medium intensity reflections occur at 20 24.04° and 26.86°, which are 

not observed in the other two phases. Also a medium intensity reflection at 29 21.71° 

is observed in this pattern, but is not observed in the pattern of LnMogOj4 containing 

all cis-bicapped Mog clusters. Table 8 gives the calculated d-spacings, 20 values, and 

relative intensities of PrMogOj4 containing a 2:1 ratio of cis- to trans-Mog bicapped 

octahedra. The calculated X-ray powder patterns of NdMogOj4, LaMogOj4, and 

PrMogO|4 in the 20 range of 20-30° are shown in Figure 5. 

Table 8. The calculated X-ray powder diffraction data for PrMogO|4 containing a 2:1 
ratio of cis- to trans-Mog bicapped octahedra 

20 d h k I I 

15.31 5.784 1 1 3 57.7 
15.93 5.557 0 2 0 14.0 
16.21 5.464 0 2 1 5.3 
17.19 5.152 1 1 4 3.6 
17.72 5.002 0 0 6 15.3 
19.27 4.602 2 0 0 10.6 
20.87 4.252 2 1 0 4.0 
21.71 4.091 2 1 2 26.3 
21.73 4.087 1 1 6 2.9 
22.70 3.913 2 1 3 3.6 
23.91 3.718 0 2 6 8.4 
24.04 3.699 2 1 4 12.1 
25.10 3.544 2 2 0 6.7 
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20 h k 1 

25.28 3.520 2 2 1 0.5 
26.29 3.387 2 0 6 5.4 
26.59 3.350 1 3 2 5.1 
26.86 3.316 1 1 8 15.4 
27.42 3.250 1 3 3 60.8 
28.54 3.124 1 3 4 8.9 
29.58 3.017 1 1 9 68.1 
30.89 2.892 2 2 6 5.7 
30.96 2.886 2 3 0 1.8 
31.52 2.836 3 1 3 100.0 
31.54 2.834 2 3 2 15.2 
31.56 2.832 1 3 6 1.6 
32.26 2.773 2 3 3 38.9 
32.37 2.764 1 1 10 6.9 
32.52 2.751 3 1 4 2.7 
33.23 2.693 2 3 4 9.0 
34.14 2.624 2 1 9 37.3 
35.57 2.521 0 4 5 5.1 
35.87 2.501 0 0 12 6.8 
36.98 2.429 0 4 6 11.0 
37.22 2.413 1 0 12 26.3 
37.55 2.393 1 3 9 21.9 
37.79 2.378 2 4 0 1.8 
37.91 2.371 2 4 1 1.9 
38.29 2.348 1 4 6 50.4 
38.54 2.334 3 3 2 0.4 
38.74 2.322 3 1 8 2.8 
39.12 2.301 4 0 0 17.7 
39.85 2.260 1 4 7 2.0 
41.04 2.197 2 0 12 13.7 
41.34 2.182 2 3 9 27.7 
42.03 2.148 2 4 6 23.2 
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20 h k 1 

42.78 2.112 1 5 3 10.0 
42.90 2.106 3 1 10 2.2 
43.47 2.080 2 3 10 1.5 
44.29 2.043 2 2 12 3.8 
45.32 1.999 3 3 8 4.2 
46.21 1.963 2 5 3 47.2 
46.37 1.956 4 2 6 2.7 
46.58 1.948 3 4 5 2.0 
46.82 1.938 3 0 12 44.7 
47.16 1.926 1 1 15 16.8 
47.46 1.914 2 1 14 1.6 
47.72 1.904 3 4 6 80.5 
48.58 1.872 1 5 8 2.6 
49.02 1.857 3 3 10 1.5 
49.03 1.856 3 4 7 2.2 
49.24 1.849 0 6 1 2.3 
50.11 1.819 1 3 14 3.3 
50.27 1.813 1 5 9 26.4 
50.36 1.810 2 1 15 30.5 
51.06 1.787 3 5 2 2.6 
51.07 1.786 5 1 3 40.0 
51.52 1.772 4 4 0 1.6 
51.62 1.769 4 4 1 2.4 
52.11 1.754 1 5 10 1.9 
52.22 1.750 3 5 4 1.8 
53.09 1.723 2 4 12 1.9 
53.18 1.721 2 3 14 3.7 
53.34 1.716 2 5 9 19.0 
54.11 1.693 4 0 12 29.2 
54.92 1.670 4 4 6 42.2 
56.23 1.634 5 1 8 2.0 
56.79 1.620 4 2 12 2.5 
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20 h k 1 

58.65 1.573 2 3 16 2.3 
59.33 1.556 1 7 2 2.0 
60.38 1.531 1 7 4 2.7 
60.59 1.527 3 3 15 9.5 
61.38 1.509 5 3 8 2.1 
62.61 1.482 5 0 12 14.7 
63.29 1.468 1 5 15 2.2 
63.34 1.467 5 4 6 27.8 
63.54 1.463 2 5 14 2.1 
64.38 1.446 4 4 12 2.4 
64.43 1.445 5 3 10 1.6 
65.20 1.430 0 4 18 54.8 
65.96 1.415 2 1 20 2.5 
66.15 1.411 5 5 2 2.0 
66.58 1.403 6 3 3 3.8 
66.71 1.401 1 1 21 3.7 
66.96 1.396 3 7 3 4.8 
67.34 1.389 0 8 0 18.7 
67.70 1.383 6 1 9 6.2 
68.50 1.369 2 7 9 4.9 
69.30 1.355 2 1 21 6.8 
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Figure 5. The calculated X-ray powder diffraction patterns of (a) NdMogOj4 

containing all cis-Mog octahedra, (b) LaMogOi4 containing a 1:1 ratio of cis- to trans-

Mog octahedra, and (c) PrMogOi4 containing a 2:1 ratio of cis- to trans-Mog octahedra 

in the 20 range of 20-30°. 
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Structure of LnMogOj4 (Ln = La, Ce, Pr) 

The structures of LaMogOi4, CeMog024 and PrMog0^4 characterized by the 

coexistence of cis- and trans-bicapped Mog clusters with 1:1 ratio. The two isomers 

are extended along the c axis in alternating fashion (Rgure 6). The ordering of the 

two isomers causes the c axis of the unit ceil to be two times longer than the b axis 

of the unit cell of LnMogOj4 containing all cis-Mog clusters, but the other two axes 

are almost identical. The Mog clusters and the O atoms are arranged in layers parallel 

to the be plane as shown in Figure 7. The oxygen atoms form a close packing in the 

sequence of ABAC, where, in the A layers, some of the O atoms are missing or 

replaced by Ln cations, while the B and C layers are fully occupied by oxygen atoms. 

The structures of cis- and trans-bicapped Mog octahedra and their oxygen 

environments are shown in Figures 8 and 9. The perfect cis-Mog024 and trans-

Mog024 cluster units should have C2v and Dj^ symmetries, respectively. However, 

due to the structure distortions, their symmetries are lowered to C2 and Cj, 

respectively. 

The Mo-Mo and Mo-0 bond distances for trans-Mog024 and cis-Mog024 clusters 

in LaMogOj4 compound are given in Tables 9 and 10, respectively. The Mo-Mo bond 

distances are in the range of 2.590(4) to 2.888(6) A. The average Mo-Mo bond 

distance in the trans-isomer is 2.703 A, which is shorter than that found in the cis-

isomer (2.748 A). This result indicates that the metal-metal bonds in the trans-isomer 
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Figure 6. The packing diagram of the cis- and trans-Mog bicapped octahedra 

LaMogOj4, viewed down the a axis. 
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Figure 7. The arrangement of Mog clusters (medium open circles), La cations (large 

open circles), and O atoms (small open circles) parallel to the be plane. 
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Figure 8. The cis-Mog024 cluster unit. 
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Figure 9. The trans-Mog024 cluster unit. 
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Table 9. Bond distances (A) for the trans-Mog024 cluster in LaMogOj4 

atom atom distance atom atom distance 

Mo(l) Mo(3) 2.651(3) Mo(l) Mo(5) 2.597(4) 

Mo(l) Mo(7) 2.590(4) Mo(3) Mo(5) 2.763(6) 

Mo(3) Mo'(5) 2.748(6) Mo(3) Mo(7) 2.775(6) 

Mo(3) Mo'(7) 2.690(6) Mo(5) Mo(7) 2.766(3) 

Mo(5) Mo'(7) 2.747(8) Mo(l) 0(5) 2.04(2) 

Mo(l) 0(7) 2.05(2) Mo(l) 0(9) 2.07(2) 

Mod) 0(11) 2.06(2) Mo(l) 0(13) 2.04(3) 

Mo(l) 0(15) 2.07(2) Mo(3) 0(3) 2.13(3) 

Mo(3) 0(7) 2.08(2) Mo(3) 0(9) 2.02(2) 

Mo(3) 0(11) 2.05(2) Mo(3) 0(14) 2.02(2) 

Mo(5) 0(4) 2.06(2) Mo(5) 0(5) 2.03(2) 

Mo(5) 0(9) 2.05(2) Mo(5) 0(10) 2.04(2) 

Mo(5) 0(11) 2.11(2) Mo(7) 0(4) 2.06(2) 

Mo(7) 0(5) 2.04(2) Mo(7) 0(7) 2.06(2) 

Mo(7) 0(10) 2.08(2) Mo(7) 0(14) 2.05(2) 
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Table 10. Bond distances (A) for the cis-Mog024 cluster in LaMogOj4 

atom atom distance atom atom distance 

Mo(2) Mo(6) 2.705(5) Mo(2) Mo'(6) 2.816(4) 

Mo(2) Mo(8) 2.591(3) Mo(4) Mo'(4) 2.685(9) 

Mo(4) Mo(6) 2.731(3) Mo(4) Mo(8) 2.738(6) 

Mo(4) Mo'(8) 2.774(6) Mo(6) Mo'(6) 2.888(9) 

Mo(6) Mo(8) 2.742(6) Mo(6) Mo'(8) 2.814(6) 

Mod) Mo(4) 3.113(4) Mo(2) Mo(7) 3.074(4) 

Mo(2) 0(2) 2.025(5) Mo(2) 0(6) 2.06(2) 

Mo(2) 0(8) 2.04(2) Mo(2) 0(10) 1.97(2) 

Mo(2) 0(12) 2.13(2) Mo(2) 0(14) 2.02(2) 

Mo(4) 0(1) 1.95(2) Mo(4) 0(3) 2.06(3) 

Mo(4) 0(12) 1.94(3) Mo(4) 0(13) 2.10(2) 

Mo(4) 0(15) 2.01(2) Mo(6) 0(2) 2.18(2) 

Mo(6) 0(3) 2.06(3) Mo(6) 0(6) 2.04(2) 

Mo(6) 0(8) 2.06(2) Mo(6) 0(13) 1.99(2) 

Mo(8) 0(4) 2.06(3) Mo(8) 0(6) 2.03(2) 
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are stronger than the bonds in the cis-isomer, and thus the trans-isomer niay contain 

more electrons than the cis-isomer. Within the trans-isomer, the average Mo-Mo bond 

distance involving the capping metal atoms is much shorter than that between atoms 

composing the octahedron, which are 2.613 A and 2.748 A, respectively. The 

intercluster Mo-Mo bond distances are in the range 3.074(4)-3.113(4) A. The Mo-0 

bond distances are in the range of 1.94(3) to 2.18(2) A. The average Mo-0 bond 

distance in trans-isomer is 2.06. While the average Mo-0 bond distance in cis-isomer 

is 2.04 A. 

Each lanthanum cation is coordinated by ten oxygen atoms. Figiire 10 shows the 

coordination spheres of the lanthanum cations. The Lai cation is sitting on a two-fold 

axis, and the La2 cation is sitting on an inversion center. The average La-0 bond 

length is 2.67(2) A. Table 11 lists the La-0 bond distances. 

Table 11. La-0 bond distances (A) in LaMogO|4 

atom atom distance atom atom distance 

La(l) 0(1) 2.49(2) Lad) 0(2) 2.86(2) 

Lad) 0(3) 2.64(3) Lad) 0(6) 2.52(2) 

Lad) 0(9) 2.56(2) Lad) 0(12) 2.90(2) 

La(2) 0(4) 2.75(3) La(2) 0(5) 2.68(2) 

La(2) 0(7) 2.57(2) La(2) 0(8) 2.67(2) 

La(2) Odl) 2.76(2) 
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Figure 10. The coordination environments of the La cations in LaMogOj^. 



www.manaraa.com

148 

Bond length-bond order relations 

The application of bond length-bond order relationships has provided valuable 

insights into the structure, bonding, oxidation states, and electron counting of the 

reduced molybdenum oxide compounds. For calculation of M-0 bond strengths in 

metal oxides, the most reliable empirical relationship between bond strengths and bond 

distances has been developed by Brown and Wu.^^ The relationship is given in 

equation 2 

s(M-0) = [d(M-0)/di(M-0)]-" (2) 

where s(M-0) is the bond strength of M-O bond in valence units (v.u); d(M-0) is the 

observed M-O bond distance (A), and dj(M-0) is the M-O single bond distance (A); 

n is an exponential parameter having a value characteristic of each metal atom. For 

molybdenum, the best dj(M-0) and n values are 1.882 and 6.0, respectively. 

The Mo-0 bond strength calculation results on LaMogOj4, containing 1:1 ratio of 

cis-Mog to trans-Mog clusters, and NdMogOj^, containing all cis-Mog clusters, are 

given in Table 12. Based on the Mo-O bond strength sums, the number of metal 

centered electrons (MCE) of Mog clusters were calculated. 

The number of MCE indicates that the cis-Mog clusters in LaMogOj4 contains 22 

electrons, and the trans-Mog clusters in LaMogOj^ contains 24 electrons. The cis-Mog 

cluster in NdMogOj4 should contain 23 electrons based on the formula. The 
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Table 12. Mo-0 bond strength sums and cluster electron counting for LaMogO|4 and 
NdMogOi4 

LaMogOi4 NdMogOj4 

cis-Mog trans-Mog cis-Mog 

I[Ss(Mo„-0)l® 25.94 24.68 25.42 

mce'' 22.06 23.32 22.58 

^s(M0n-O) = [d(MOn-O)/1.882]-^0 

^CE = 48 - I[Is(MOn-0)] 

calculated MCE of the cis-Mog cluster in NdMogO|4 is very consistent with 23. 

Magnetic properties of LnMogO]^4 containing a 1:1 ratio of cis- to trans-Mog 

bicapped octahedra 

The molar magnetic susceptibilities of LnMogOj4 (Ln = La, Ce, and Pr) as a 

function of temperature are shown in Figure 11, 12, and 13. 

The susceptibility data in the 100-300 K range were fitted to a modified Curie-

Weiss relation, % = C/(T - 6) + Xq, where C, 9, and refer to the Curie constant, the 

Weiss temperature, and temperature independent susceptibility, respectively. The 

results of nonlinear fitting of the observed data are given in Table 13. 
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Figure 11. The molar magnetic susceptibility of LaMogOj^ as a function 

temperature and reciprocal susceptibility vs. temperature (inset) 
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Figure 12. The molar magnetic susceptibility of CeMogOj4 as a function 

temperature and reciprocal susceptibility vs. temperature (inset). 
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Figure 13. The molar magnetic susceptibility of PrMo80j4 as a function 

temperature and reciprocal susceptibility vs. temperature (inset). 
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Table 13. Parameters derived from the non-linear fitting results of observed magnetic 
data for LnMogO|4 (Ln = La, Ce, Pr) containing a 1:1 ratio of cis- to trans-Mog 
octahedra 

Compound C(emu-KAnole) 9(K) 5^(emii^naole) M(BM) 

LaMogOj4 0.042 21.8 4.54 X 10'^ 0.58 

CeMogOj4 0.79 -27.2 1.50 X 10-^ 2.52 

PrMogOj4 1.55 -16.4 2.94 X 10-^ 3.52 

LaMofil^. A small effective moment (0.58 BM) in the temperature range 100-

300 K was observed for LaMogO|4. By measuring the susceptibility of La203 which 

was used in the synthesis of LaMogOi4, a small moment (0.68 BM) was also observed 

(see Appendix C). Since La^"*" and O^" are diamagnetic, the observed moment in 

La203 must be from impurities. Therefore, the small moment observed in LaMogO^^ 

may also be from the impurities introduced during the synthesis. 

CeMo^ 14. The effective magnetic moment of CeMog0^4 is 2.52 BM, which 

is almost identical to the calculated moment of Ce (2.54 BM). 

PrMo^j^. The effective magnetic moment of PrMogO|4 is 3.52 BM, which 

also is almost identical to the calculated moment of Pr^"*" (3.58 BM).^^ 
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Based on the facts discussed above, there is no contribution to the observed 

moment from either the cis- or trans-bicapped Mog clusters, and all the electrons 

within the clusters are evidently paired. This conclusion is consistent with the bond 

length-bond order calculation results, which indicate that the cis-Mog cluster contains 

22 electrons, and the trans-Mog cluster contains 24 electrons in LaMog0^4 containing 

a 1:1 ratio of cis- to trans-bicapped Mog clusters. 

Magnetic properties of LnMogO|4 containing all cis-Mog bicapped octahedra 

The molar magnetic susceptibilities of LnMogOj4 (Ln = Nd and Sm) as a function 

of temperature are shown in Figures 14 and 15. The susceptibility data in the 100-300 

K range were fitted to a modified Curie-Weiss relation, % = C/(T - 0) + 3Co-

results of nonlinear fitting of the observed data are given in Table 14. 

Table 14. The non-linear fitting results of observed magnetic data for LnMogO|4 (Ln 
= Nd and Sm) containing all cis-Mog octahedra 

Compound C(emu-K/mole) 0(K) J^(emu/mole) p(BM) 

NdMogOi4 1.30 

SmMogO|4 0.11 

-14.4 

-55.9 

1.20 X 10-3 3.23 

1.16 X 10-3 0.92 
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Figure 14. The molar magnetic susceptibility of NdMogOj^ as a function 

temperature and reciprocal susceptibility vs. temperature (inset). 
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Figure 15. The molar magnetic susceptibility of SmMogOi4 as a function 

temperature and reciprocal susceptibility vs. temperature (inset). 
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N d M o ^ T h e  e f f e c t i v e  m a g n e t i c  m o m e n t  f o r  N d M o g O i 4  c o n t a i n i n g  a l l  c i s -

bicapped Mog clusters is 3.25 BM. Since the cis-Mog clusters in LnMogOj4 

containing all cis-bicapped Mo clusters are formally 23-electron clusters, the clusters 

might be expected to make a contribution to the observed magnetic moment. 

However, by comparison to the calculated magnetic moment of Nd^"*" (3.62 

and the observed moment of neodynium oxide Nd203 (3.52 BM),^^ it appears that 

there is no magnetic moment contribution from the 23-electron clusters. The electrical 

resistivity measurements have shown metallic character for NdMogO|4,^^ indicating 

that the unpaired electrons in the cis-Mog clusters must be delocalized between the 

metal clusters. The paramagnetism from the conduction electrons in a material, which 

is also called Pauli paramagnetism, is independent of temperature. Therefore, there 

is no effective magnetic moment contribution from the delocalized electrons, and the 

effective magnetic moment essentially arises from the rare-earth cations. 

The effective magnetic moment for SmMogOj4 containing all cis-

bicapped Mog clusters is 0.92 BM. Again, a comparison to the calculated magnetic 

" J t  91 
moment of Sm (0.85 BM), and the observed moment for samarium oxide Sm203 

(0.92 BM) indicates that there is no contribution to the observed moment from the 

23-electron clusters. 

In fact, by comparison of the XQ terms of LnMogOj4, it was found that the 

magnitudes of XQ for LnMogOj4 containing all cis-Mog clusters are 4-25 times more 
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than that of LnMogOj4 containing 1:1 ratio of cis- to trans-Mog clusters. This result 

indicates that a substantial contribution to the temperature independent susceptibility 

arises from the conducting electrons. 

Electrical properties of LnMogO^^ 

The LnMogOj4 compounds have long intercluster distances, for example, 3.074(4) 

- 3.113(4) A in LaMog0^4 containing a 1:1 ratio of cis- to trans-Mog octahedra, 

therefore, the electrical resistivities might be expected to exhibit insulating or 

semiconducting behaviors. However, a measurement on NdMogO|4 containing all cis-

Mog octahedra indicated a metallic behavior which was characterized by a decreasing 

resistivity ratio as the temperature decreased. 

In this work, an electrical resistivity measurement was made on a LaMogO|4 

single crystal (1.2 x 1 x 0.8 mm ). The results are shown in Figure 16. The 

resistivity decreases with an increase in temperature, which is a typical semiconducting 

behavior. 

Therefore, it can be concluded that the LnMogO|4 compounds containing all cis-

Mog octahedra are metallic, and LnMogOj4 compounds containing a 1:1 ratio of cis-

to trans-Mog octahedra are semiconducting. This conclusion is consistent with the 

results of the magnetic susceptibility measurements. The unpaired electrons in the cis-

Mog clusters of LnMogOi4 containing all cis-Mog octahedra are delocalized, and have 
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Figure 16. The electrical resistivity of LaMogOj^ as a function of temperature. 
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no contribution to the effective magnetic moment However, all of the electrons are 

paired and localized in the Mog clusters of LnMogO^^ containing a 1:1 ratio of cis-

to trans-Mog octahedra, and the materials are semiconductors. 

Electronic structure calculations 

The electrical resistivity measurements have shown that LaMogO|4 exhibits 

semiconducting and NdMoOj4 shows metallic behavior. It would be interesting to 

know the electronic structures of these compounds to better understand the physical 

properties. Due to the calculation limitations, the calculation could only be carried out 

on the compound NdMoOi4, which has a relatively smaller unit cell than LaMogOj4. 

The total DOS curve (Figure 17) for NdMog024 containing all cis-Mog bicapped 

octahedra was obtained by sampling 8 k-point sets in the Brillouin zone. It is seen 

that the Fermi level falls near a peak in the total DOS, which indicates that the 

NdMogOj4 compound is a conductor. This result is consistent with the resistivity 

measurements of NdMogOi4 by C. Carlson. The resistivity measurements of 

NdMogOi4 indicated that the NdMogOj4 exhibited metallic character. 

J. Martin and coworkers calculated the band structure of NdMog024 containing 

cis-Mog bicapped octahedra based on one layer from the reported structure.^"^ Their 

results show 11 low-lying d bands below the Fermi level that could accommodate 22 

electrons. The Fermi level falls in a narrow band which is half occupied by the "23rd" 
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electron. This result suggests that the "23 rd" electron be localized and NdMogOj4 

be a semiconductor, which is not consistent with resistivity measurements of 

NdMogOj4. 

Conclusions 

A new ternary rare-earth reduced molybdenum oxide LaMogOj4 with a novel 

crystal structure was discovered by synthesis at 1250°C in a sealed, evacuated quartz 

tube. The novel structure contains a 1:1 ratio of cis- to trans-Mog bicapped octahedra, 

which are arranged alternately along the c-axis of the unit cell. The Mo-Mo bond 

distances are in the range of 2.590(4) to 2.888(6) A. The average Mo-Mo bond 

distance in trans-isomer is 2.703 A, which is shorter than that found in the cis-isomer 

(2.748 A). The Mo-0 bond distances are in the range of 1.94(3) to 2.18(2) A. The 

M-0 bond strength calculations indicate that the cis- and trans-Mog clusters in 

LaMo80i4 contain 22 and 24 electrons, respectively. 

A systematic investigation in the Ln203-Mo03-Mo (Ln = La, Ce, Pr, Nd, Sm, Gd, 

and Dy) system was explored at 1250°C in sealed, evacuated quartz tubes. Under 

these synthetic conditions, the phases containing all cis-Mog bicapped clusters and a 

1:1 ratio of cis-Mog to trans-Mog bicapped clusters were found. However, the phase 

containing a 2:1 ratio of cis- to trans-Mog bicapped octahedra was not observed. It 
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was interesting to note that the sizes of the rare-earth cations are critical for the 

formation of the various phase types. The larger cations (La, Ce, and Pr) aid in the 

formation of trans-Mog octahedra, and the smaller cations (Nd and Sm) only stabilize 

the cis-Mog octahedra. For the rare-earth cations smaller than Sm (Gd and Dy), no 

compounds containing Mog bicapped octahedra were found. A rational explanation 

for this result arises from the observation that the effective volume of cis-Mog cluster 

is 3/4th the value of the trans-Mog cluster. 

The magnetic susceptibility measurements indicated that no effective moment 

contribution arose from the metal clusters Mog, even though the cis-Mog cluster in 

LnMogOj4 containing all cis-Mog octahedra should contain an odd number of 

electrons (23). The electrical resistivity measurements and electronic structure 

calculations indicate that the LnMogO^^ containing all cis-Mog clusters are metallic 

compounds, and the LnMog0^4 containing a 1:1 ratio of cis- to trans-Mog clusters are 

semiconducting compounds. 
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GENERAL CONCLUSIONS 

The goal of this dissertation has been to develop the chemistry of Group VI metal 

(Mo, W) nitrides and oxides. 

When compared to their oxides, much less information is known about the Group 

VI nitrides. This lack of information stems from the chemical instability of Group VI 

metal nitrides with respect to N2 and N-saturated elements at high temperatures. 

Therefore, "turning down the heat" has become an important synthetic strategy to 

produce Group VI metal nitrides. One focus of this dissertation was to prepare 

tungsten nitrides via molecular precursors at relatively low temperatures. 

WNCI3, which contains a tetrameric nitride core W4N4, represents a potential 

intermediate to the desired product (x > 1). It is soluble in acetonitrile and forms 

an acetonitrile adduct [WNQ3-NCCH3J4. The [WNCI3'NCCH3]4 complex consists 

of a W4N4 tetrameric core as well. Substitution of chloride by nitride and azide has 

been accomplished by either solid state reactions or solution reactions at low 

temperatures. Several new nitrides and carbide nitrides have been prepared and 

characterized. However, attempts to remove chlorine by reduction reaction, using 

reducing reagents such as hexamethyldisilane, tributyltin hydride, tin and zinc metal, 

were not successful. 

An interesting compound WN(N3)3 was prepared from the reaction of WNCI3 and 
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NaN3 in acetonitrile at room temperature. It may have a similar tetrameric structure 

to [WNQ3*NCCH3]4. Due to the extremely explosive nature, this compound could 

not be isolated from the acetonitrile solution in a large yield. Thermal decomposition 

of this compound in 1,2-dichlorobenzene at reflux was attempted, however, the azide 

did not decompose completely. 

A bulk solid phase of tungsten nitride W3N5 was prepared through a solid state 

reaction between WNCI3 and Zn3N2 in sealed Pyrex tubes at 400 °C. The XPS study 

indicated that the oxidation state of tungsten in this amorphous phase was +5. 

Therefore, each tungsten atom in this W3N5 compound possesses one single d-electron. 

The magnetic susceptibility measurements indicated that W3N5 exhibited diamagnetic 

property in the temperature range 6-300 K. This result suggest that the single electron 

possessed by the tungsten atom in W3N5 be used for W-W bond formation. 

By heating W3N5 at 600°C in sealed quartz tubes, a cubic tungsten mononitride 

phase (WN) with rock salt structure (a = 4.171 A) was obtained. Similarly, by heating 

W3N5 at 800 °C in sealed quartz tubes the hexagonal WN phase and tungsten metal 

were obtained. At the same time, a few golden crystals were also obtained, which 

were grown via a chemical transport reaction. The structure of the golden compound 

W2N2(C2N2) consists of W2 dimers, hydrazido ligands N2^", and 1,4-diazabutenido 

ligands represented by three resonance structures, [N-C=C-N]^', [N=C-C-N]^', and [N-

C-C=N1^". The dimers are linked together by r\^ N-N and N-C-C-N groups to 
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form a 3-dimensional network. The metal to hydrazido nitrogen bond distances fall 

in the range 1,97(4) to 2.19(4) A, and the metal-diazabutenido nitrogen distances show 

a more limited range from 2.01(4) to 2.07(3) A, The hydrazido N-N bond distance is 

1.43(5) A, and the diazabutenido C-C bond distance is 1.59(4) A and N-C bond 

distance 1.56(4) A. The W-W single bond distance is 2.767(2) A. 

The electronic structure calculations indicated that the cubic WN with NaCl 

structure was a conductor and might exhibit superconductivity because the high density 

of states at the Fermi level. However, the magnetic susceptibility measurements 

indicated that the cubic WN was basically diamagnetic above 6 K, but did not show 

any evidence that this cubic WN phase was a superconductor. 

The reduced ternary molybdenum oxides have been extensively explored since the 

discovery of the NaMo40g compound containing trans-edge-shared Mog octahedra. 

Many compounds with interesting structures and properties have been found. 

A new reduced ternary rare-earth molybdenum oxide LaMogOj4 containing Mog 

bicapped octahedra was discovered at 1250°C in a sealed, evacuated quartz tube. The 

novel structure contains a 1:1 ratio of cis- to trans-Mog bicapped octahedra, which are 

arranged alternately along the c-axis of the unit cell. The Mo-Mo bond distances are 

in the range of 2.59(X4) to 2.888(6) A. The average Mo-Mo bond distance in the 

trans-isomer is 2.703 A, which is shorter than that found in the cis-isomer (2,748 A). 

The Mo-0 bond distances are in the range of 1.94(3) to 2.18(2) A. The Mo-0 bond 
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strength calculations indicate that the cis- and trans-Mog clusters in LaMogOj4 contain 

22 and 24 electrons, respectively. 

A systematic investigation in the Ln203-Mo03-Mo OLn = La, Ce, Pr, Nd, Sm) 

system was explored at I250°C in sealed, evacuated quartz tubes. Under these 

synthetic conditions, only the phases containing all cis-Mog bicapped clusters, and a 

1:1 ratio of cis-Mog to trans-Mog bicapped clusters, were found. However, the phase 

containing a 2:1 ratio of cis- to trans-Mog bicapped octahedra was not observed. It 

was noteworthy that the sizes of the rare-earth cations were critical for the formation 

of the various phase types. The larger cations (La, Ce, and Pr) aided in the formation 

of trans-Mog octahedra, and the smaller cations (Nd and Sm) only stabilized the cis-

Mog octahedra. A rational explanation for this result arises from the observation that 

the effective volume of cis-Mog cluster is 3/4th the value of the trans-Mog cluster. 

The magnetic susceptibility measurements indicate that no effective moment 

contribution arises from the metal clusters Mog, even though the cis-Mog cluster in 

LnMogOj^ containing all cis-Mog octahedra should contain an odd number of 

electrons (23 e"). The electrical resistivity measurements and electronic structure 

calculations indicate that the LnMogOj4 containing all cis-Mog clusters are metallic 

compounds, and the LnMogOi4 containing a 1:1 ratio of cis- to trans-Mog clusters are 

semiconducting compounds. 
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APPENDIX A. PHYSICAL CONSTANTS 

Table A-1. Values of physical constants involved in this dissertation^ 

Quantity Symbol Value Units 

Planck constant h 6.6260755(40) 10"^ J s 

Bohr magneton MB 9.2740154(31) lo-^"^ J 

Avogadro constant 6.0221367(36) 10^3 mol"^ 

Boltzmann constant k 1.380658(12) 10-23 J K-^ 

^ Alberty, R. A.; Silbey, R. J. Physical Chemistry, 1st Ed. John Wiley & Sons, Inc. 

New York, 1992. 
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Table B-1. Selected core-diamagnetic susceptibilities^ 
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Susceptibility 

-1,0 X 10'^ emu/g -1.0 x 10"^ emu/mol 

Ag+ 24 25.89 

Cd2+ 22 24.73 

Ce3+ 20 28.02 

17 23.82 

cr 26 9.23 

CN- 18 4.68 

Cu+ 12 7.63 

C\?-^ 11 6.99 

19 30.88 

Er^"^ 18 30.11 

Eu2+ 22 33.43 

Eu3+ 20 30.39 

F 11 2.09 

Fe^^ 13 7.26 

Fe^+ 10 5.58 

Gd3+ 20 31.45 

16 28.56 

Hg^"^ 37 74.22 
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Table B-1. (continued) 

Ho^ 19 31.34 

0^- 12 1.92 

oir 12 2.04 

La^"^ 20 27.78 

17 29.74 

MO2+ 31 29.74 

Mo^-^ 23 22.07 

17 16.31 

Mo^+ 12 11.51 

Mo^ 7 67.16 

Nd^"" 20 28.85 

NH/ 11.5 1.73 

Pr3+ 20 28.18 
PJA+ 17 23.95 

Sc^"^ 6 2.70 

Sm2+ 23 34.59 

Sm^-^ 20 30.08 

Sn^-^ 20 23.74 

Sn"^ 16 18.99 

Sr^"^ 15 13.14 

Ta^"*" 14 25.33 

Tb^-^ 19 30.20 

Tb"^ 17 27.02 

Te^- 70 89.32 

Te"̂  14 17.86 
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Table B-1. (continued) 

Te^ 12 15.31 

23 53.37 

Ti3+ 9 4.31 

Ti4+ 5 2.40 

T1+ 34 69.49 

TI3+ 31 63.35 

Tm^"^ 18 30.41 
Y2+ 15 7.64 

V3-H 10 5.09 

V4+ 7 3.57 
Y5+ 4 2.04 
W2+ 41 75.38 
W3+ 36 66.19 
W4+ 23 42.29 
W5+ 19 34.93 

13 23.90 

Y3+ 12 10.67 

Yb2+ 20 34.61 

Yb^"^ 18 31.15 

^ Mulay, L. N.; Boudreaux, E. A. Theory and applications of molecular diamagnetism. 

New York: WUey, 1976. 
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APPENDIX C. MAGNETIC PROPERTIES OF LnjOj 

The molar magnetic susceptibilities of Ln203 (Ln = La, Pr, Nd, and Sm) as a 

function of temperature are shown in the following Figures. The susceptibility data 

in the 100-300 K range were fit to a modified Curie-Weiss relationship, % = C/(T - 0) 

+ Xo' where C, 0, and Xo Curie constant, the Weiss temperature, and 

temperature independent susceptibility. 
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Figure C-1. The molar magnetic susceptibility of La203 as a function of temperature 

and reciprocal susceptibility vs. temperature (inset). 

Curie = 0.059, Weiss = -39.1, = -1.2 x 10"^, and p = 0.69. 
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Figure C-2. The molar magnetic susceptibility of Pr203 as a function of temperature 

and reciprocal susceptibility vs. temperature (inset). 
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Figure C-3. The molar magnetic susceptibility of Nd203 as a function of temperature 

and reciprocal susceptibility vs. temperature (inset). 

Curie = 1.59, Weiss = -0.51, Xq - ^ ^0"^, and p = 3.57. 
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Figure C-4. The molar magnetic susceptibility of Sm203 as a function of temperature 

and reciprocal susceptibility vs. temperature (inset). 

Curie = 0.11, Weiss = -92.5, Xo= 1.16 x 10"^, and p = 0.94 
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APPENDIX D. [WNC13 NCCH2CH3J4 

X-ray structure determination 

The single crystals of [WNa3*NCCH2CH3]4 were obtained by dissolving 

[WNa3*NCCH2CH3]4 in 1,1-dichloromethane and standing at room temperature for 

two weeks. A suitable deep orange single crystal with dimensions 0.20 x 0.10 x 0.10 

a 
mm was selected from material still in contact with the mother solution. The crystal 

was then encased in epoxy resin while in a glove bag under a nitrogen flow, attached 

to the tip of a glass fiber, and immediately delivered to the diffractometer with low 

temperature equipments. All measurements were made on a Rigaku AFC6R 

diffractometer using graphite monochromated Mo Ka (k = 0.71069 A) radiation and 

a 12 kW rotating anode generator. 

Cell constants and an orientation matrix for data collection were obtained from a 

least-squares refinement using the setting angles of 25 carefully centered reflections 

in the range 4.0 < 20 < 35.0, and corresponded to a triclinic cell with dimensions: a 

=  8 . 8 7 5 ( 2 )  A , b  =  1 0 . 2 2 0 ( 2 )  A, c  =  1 0 . 3 1 1 ( 2 )  A, a  =  1 1 0 . 7 6 ( 1 ) ° ,  p =  9 2 . 3 6 ( 1 ) ° ,  y  =  

89.56(1)°, and V = S73.7(3) A^. The data were collected at -60 °C using the co-20 

scan technique over the range 4° < 20 < 50° in the hemisphere (±/i, +k, ±/). Three 

standard reflections were monitored every 150 reflections and showed no intensity 

variation over the collection period. A total of 3283 reflections were collected, of 
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which 3092 were unique = 0.024) and 2644 of which were observed with I > 

3.000(1). No Decay correction was applied. With an absorption coefficient for Mo 

Ka radiation of p = 140.7 cm"\ an empirical absorption correction using the \|f scan 

technique was applied after the structure solution. The data were corrected for Lorentz 

and polarization effects. 

The triclinic space group was PI (#2) was chosen on the basis of systematic 

absences and intensity statistics. The structure was solved by the SHELXS direct 

methods which yielded the positions of the tungsten atoms. Successive Fourier 

electron difference maps yielded the positions of the chlorine, nitrogen and carbon 

atoms. The structure was then refined by full-matrix least-squares methods with 

anisotropic thermal parameters on all non-hydrogen atoms. The final cycle of full-

matrix least-squares refinement was based on 2644 observed reflections and 163 

variable parameters and converged with unweighted and weighted agreement factors 

of /? = 0.023 and Rw = 0.031, respectively. The asymmetric unit was found to be 

[WNQ3-NCCH2CH312. All calculations were performed using the TEXSAN 

crystallographic software package of Molecular Structure Corporation. The 

crystallographic data and refinement results are given in Table D-1, and the positional 

parameters and isotropic equivalent temperature factors are given in Table D-2. The 

anisotropic temperature factors are listed in Table D-3. 
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Table D-1. Crystallographic data for [WNa3-NCCH2CH3]4 

Empirical Formula ^12^12^20^8^4 
Formula Weight 1437.18 
Crystal Size 0.20 X 0.10 x 0.10 mm" 
Crystal System ti^linic 
Space Group PI (#2) 
Lattice Parameters a = 8.875(2) A 

b= 10.311(2) A 
c = 10.220(2) A 
a = 110.76(1)° 
P = 92.36(1)° 
Y = 89.56(1)° 

Volume 873.7(3) A^ 
Z Value 1 
Calculated Density 2.731 g/cm^ 

^000 648.00 
p(MoKa) 140.74 cm"^ 
Diffractometer Rigaku AFC6R 
Radiation MoKa (k = 0.71069A) 
Temperature -60.0 °C 

Two-theta Range 0-50° 

Scan Mode co-20 
No. of Reflections Collected 3283 
No. Observations (I > 3.00o(I)) 2644 
No. Variables 163 
Max Shift/error in Final Cycle 0.00 
Goodness of Fit^ 2.56 
Max. and Min. Peaks in the Final Diff. Map 0.86, -1.55 eVA^ 
Residuals^ R = 0.023, Rw = 0.031 

» Goodness of Rt = E(0(|FJ - |FJ)2/(N„bs -
" R = S I |Fo| - |Fc| I / I |Fo|; Rw = [(Z w(|Fo| - |Fc|)^/X w Fo^ )!•«. 
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Table D-2. Atomic coordinates and equivalent isotropic thermal parameters (A^) of 
the non-hydrogen atoms for [WNQ3-NCCH2CH3J4 

atom X y z  V 

W(l) 0.35810(4) -0.75580(3) 0.56381(3) 1.293(8) 

W(2) 0.70306(4) -0.88754(3) 0.70801(3) 1.275(7) 

Cl(l) 0.5359(3) -0.6904(2) 0.4407(2) 2.42(5) 

a(2) 0.8675(3) -0.8488(3) 0.5590(3) 2.61(5) 

a(3) 0.2348(3) -0.7890(3) 0.7749(2) 2.44(5) 

Cl(4) 0.7751(3) -0.6930(2) 0.8979(3) 2.96(5) 

Cl(5) 0.1703(3) -0.6206(2) 0.5202(3) 2.78(5) 

Cl(6) 0.5806(3) -0.9850(2) 0.8504(2) 2.22(5) 

N(l) 0.3181(8) -0.9123(7) 0.4385(7) 1.6(2) 

N(2) 0.5461(7) -0.8260(7) 0.6493(7) 1.6(1) 

N(3) 0.4478(9) -0.5518(7) 0.7428(8) 2.3(2) 

N(4) 0.9178(9) -0.9910(8) 0.7740(8) 2.5(2) 

C(l) 0.511(1) -0.4606(10) 0.8177(10) 2.1(2) 

C(2) 1.025(1) -1.042(1) 0.7908(10) 2.5(2) 

C(3) 0.591(1) -0.339(1) 0.916(1) 3.2(2) 

C(4) 1.165(1) -1.113(1) 0.813(1) 3.1(2) 

C(5) 0.749(1) -0.326(1) 0.869(1) 3.7(3) 

C(6) 1.144(1) -1.270(1) 0.765(1) 3.6(3) 

^ Bgq = 8/37c2(Uii(aa*)2 + UjjCbb*)^ + UggCcc*)^ + 2Ui2aa*bb*cosY + 

2Ui3aa*cc*cosP + 2U23bb*cc*cosa) 
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Table D-3. Anisotropic thermal parameters® (A^) of the non-hydrogen atoms for 
[WNC13NCCH2CH314 

Atom Uji U22 U33 U12 Ui3 U23 

W(l) 0.0162(2) 0.0170(2) 0.0157(2) -0.0013(1) -0.0009(1) -0.0058(1) 

W(2) 0.0152(2) 0.0165(2) 0.0169(2) -0.0022(1) 0.0002(1) -0.0064(1) 

Cl(l) 0.033(1) 0.032(1) 0.034(1) 0.006(1) 0.002(1) -0.019(1) 

a(2) 0.023(1) 0.038(1) 0.046(1) 0.003(1) 0.003(1) -0.025(1) 

Cl(3) 0.025(1) 0.024(1) 0.043(1) 0.0026(9) 0.006(1) -0.011(1) 

Cl(4) 0.044(2) 0.033(1) 0.027(1) -0.013(1) 0.005(1) -0.002(1) 

Cl(5) 0.030(1) 0.042(1) 0.032(1) -0.007(1) -0.011(1) -0.012(1) 

a(6) 0.032(1) 0.025(1) 0.032(1) 0.0046(10) 0.0002(10) -0.016(1) 

N(l) 0.019(4) 0.019(4) 0.023(4) -0.004(3) 0.001(3) -0.008(3) 

N(2) 0.014(4) 0.028(4) 0.019(3) 0.001(3) -0.002(3) -0.010(3) 

N(3) 0.035(5) 0.032(5) 0.016(4) -0.007(4) 0.001(4) -0.006(4) 

N(4) 0.023(4) 0.033(5) 0.035(5) -0.004(4) -0.004(4) -0.010(4) 

C(l) 0.025(5) 0.023(5) 0.034(5) 0.003(4) -0.005(4) -0.014(4) 

C(2) 0.024(5) 0.023(5) 0.043(6) -0.004(4) -0.004(5) -0.008(5) 

C(3) 0.041(6) 0.040(7) 0.033(6) -0.002(5) 0.014(5) -0.001(5) 

C(4) 0.028(6) 0.046(7) 0.039(6) -0.011(5) -0.012(5) -0.012(5) 

C(5) 0.039(7) 0.043(7) 0.057(7) 0.001(5) 0.019(6) -0.015(6) 

C(6) 0.036(6) 0.064(8) 0.046(7) 0.006(6) -0.010(5) -0.028(6) 

®The coefficients Uy of the anisotropic temperature factor expression are defined as 
exp(-2T:2(a*2Uiih^ + b*^U22k^ + + 2a*b*Ui2hk + 2a*c*Ui3hl + 
2b*c*U23kl)) 
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Description of structure 

[WNQ3-NCCH2CH3]4 crystallizes in the triclinic space group PI with one 

[WNQ3-NCCH2CH314 molecule per unit cell. There are no free solvent molecules 

in the unit cell. An ORTEP diagram of the unit cell is shown in Figure D-1, The 

molecular structure of [WNQ3 •NCCH3CH314 (Figure D-2), which is similar to the 

molecular structure of [WNa3-NCCH3]4, consists of a W4N4 tetramer core. The 

selected bond distances and angles for [WNQ3-NCCH2CH3]4 are listed in Tables D-4 

and D-5, respectively. 

Table D-4. Selected bond distances (A) in [WNCI3 *NCCH2CH3]4 

atom atom distance atom atom distance 

W(l) a(i) 2.304(2) W(l) a(3) 2.315(2) 

W(l) Cl(5) 2.294(2) W(l) N(l) 1.696(7) 

W(l) N(2) 2.093(6) W(l) N(3) 2.362(7) 

W(2) Cl(2) 2.288(2) W(2) Cl(4) 2.315(2) 

W(2) Cl(6) 2.344(2) W(2) N(l) 2.080(7) 

W(2) N(2) 1.700(6) W(2) N(4) 2.366(7) 

N(3) C(l) 1.12(1) N(4) C(2) 1.12(1) 

C(l) C(3) 1.47(1) C(2) C(4) 1.49(1) 

C(3) C(5) 1.52(1) C(4) C(6) 1.53(1) 
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Table D-5. Selected bond angles (°) in [WNQ3-NCCH2CH3J4 

atom atom atom angle atom atom atom angle 

ci(l) W(l) Cl(3) 161.80(8) a(l) W(l) a(5) 94.86(9) 

ci(l) W(l) N(l) 96.0(3) a(i) W(l) N(2) 83.5(2) 

Cl(l) W(l) N(3) 81.3(2) Cl(3) W(l) Cl(5) 93.75(9) 

a(3) W(l) N(l) 97.9(3) a(3) W(l) N(2) 83.7(2) 

a(3) W(l) N(3) 83.3(2) a(5) W(l) N(l) 101.1(2) 

Cl(5) W(l) N(2) 163.6(2) Cl(5) W(l) N(3) 86.4(2) 

N(l) W(l) N(2) 94.7(3) N(l) W(l) N(3) 171.7(3) 

N(2) W(l) N(3) 77.3(3) a(2) W(2) Cl(4) 95.04(10) 

Cl(2) W(2) Cl(6) 162.85(8) ci(2) W(2) N(l) 86.0(2) 

Cl(2) W(2) N(2) 97.2(2) a(2) W(2) N(4) 82.3(2) 

Cl(4) W(2) Cl(6) 92.15(9) a(4) W(2) N(l) 164.4(2) 

Cl(4) W(2) N(2) 100.0(2) a(4) W(2) N(4) 84.8(2) 

Cl(6) W(2) N(l) 83.0(2) a(6) W(2) N(2) 96.8(2) 

Cl(6) W(2) N(4) 82.9(2) N(l) W(2) N(2) 95.2(3) 

N(l) W(2) N(4) 80.0(3) N(2) W(2) N(4) 175.2(3) 

W(l) N(l) W(2) 172.4(4) W(1) N(2) W(2) 176.2(4) 

W(l) N(3) C(l) 169.4(8) W(2) N(4) C(2) 172.3(8) 

N(3) C(l) C(3) 178.7(10) N(4) C(2) C(4) 179(1) 

C(l) C(3) C(5) 111.6(9) C(2) C(4) C(6) 111.6(8) 
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Figure D-2. The molecular structure of [WNCl3-NCCH2CH3]^. 
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